Charmonium Spectroscopy Modern Status Yu S Kalashnikova PANDA

  • Slides: 24
Download presentation
Charmonium Spectroscopy: Modern Status Yu. S. Kalashnikova PANDA Meeting October 22 ITEP

Charmonium Spectroscopy: Modern Status Yu. S. Kalashnikova PANDA Meeting October 22 ITEP

Charmonium mc = 1. 5 Ge. V Yu. S. Kalashnikova, ITEP 2

Charmonium mc = 1. 5 Ge. V Yu. S. Kalashnikova, ITEP 2

Theory: Godfrey-Isgur M, Me. V 4250 Expected 4000 ? ? 3750 DD 3500 3250

Theory: Godfrey-Isgur M, Me. V 4250 Expected 4000 ? ? 3750 DD 3500 3250 3000 0 -+ 1 -- 0++ 1++ 2++ 1+- Yu. S. Kalashnikova, ITEP 2 -- 3 -- 2 -+ 3

 c’ (21 S 0) M = 3637 4 Me. V Ba. R KSK

c’ (21 S 0) M = 3637 4 Me. V Ba. R KSK CLEO KSK Yu. S. Kalashnikova, ITEP 4

hc(11 P 1) M = 3525. 93 0. 27 Me. V CLEO Yu. S.

hc(11 P 1) M = 3525. 93 0. 27 Me. V CLEO Yu. S. Kalashnikova, ITEP (2 S) -> 0 hc 5

Charmonium Zoo Experiment Belle, Ba. Bar, CDF, D 0 Belle, Ba. Bar Belle State

Charmonium Zoo Experiment Belle, Ba. Bar, CDF, D 0 Belle, Ba. Bar Belle State Production mechanism X(3872) B -> K decay, pp Z(3930) Y(3940) B -> K decay X(3940) double charmonium Belle Y(4008) B -> K decay Belle Y(4160) double charmonium Ba. Bar, BES Y(4175) ISR Ba. Bar, CLEO, Belle Y(4260) ISR Ba. Bar, Belle Y(4350) Belle Y(4620) ISR Belle Z(4430) B -> K decay Belle Z(4050) B -> K decay Belle Yu. S. Kalashnikova, ITEP Z(4250) B -> K decay 6

Ø X(3872) threshold effect, tetraquark Ø Y(4260) hybrid, threshold effect, tetraquark Ø Y(4325) hybrid,

Ø X(3872) threshold effect, tetraquark Ø Y(4260) hybrid, threshold effect, tetraquark Ø Y(4325) hybrid, threshold effect, tetraquark Ø Z(3930) 23 P 2 charmonium Ø Z(4430)+ Ø tetraquarks, hadrocharmonia Z(4050)+ Ø Z(4250)+ Yu. S. Kalashnikova, ITEP 7

Z(3930) The mass is 50 – 80 Me. V smaller than predicted for 23

Z(3930) The mass is 50 – 80 Me. V smaller than predicted for 23 P 2 Yu. S. Kalashnikova, ITEP 8

X(3872) Isospin mixture Ø + - J/ ( J/ ) Br(B->KX)Br(X-> + - J/

X(3872) Isospin mixture Ø + - J/ ( J/ ) Br(B->KX)Br(X-> + - J/ )=(1. 14± 0. 2)10 -5 Ø + - 0 J/ ( J/ ) Br(X-> + - 0 J/ )/Br(X-> + - J/ )=1. 0± 0. 4± 0. 3 Ø J/ Br(X-> J/ )/ Br(X-> + - J/ )=0. 14± 0. 5 Ø < 2. 3 Me. V Ø JPC = 1++ (2 -+ is not excluded) Yu. S. Kalashnikova, ITEP 9

PDG MX 3872: 3871. 2 ± 0. 5 Me. V PDG 06: m. D

PDG MX 3872: 3871. 2 ± 0. 5 Me. V PDG 06: m. D 0+ m. D*0 = 3871. 1 ± 0. 8 Me. V CLEO 3871. 7 ± 0. 4 Me. V hep-ex/0701016 Average for threshold: 3871. 6 ± 0. 4 Me. V m. D 0 + m. D*0 – m. X = 0. 4 0. 6 Me. V Yu. S. Kalashnikova, ITEP 10

X(3872) in J/ : (testing tetraquark hypothesis) No charged partners in B-> K (J/

X(3872) in J/ : (testing tetraquark hypothesis) No charged partners in B-> K (J/ - 0) Yu. S. Kalashnikova, ITEP 11

Yu. S. Kalashnikova, ITEP 12

Yu. S. Kalashnikova, ITEP 12

X(3872) in D 0 D*0 (new Belle) M(BW) = 3872. 6+0. 5 -0. 4

X(3872) in D 0 D*0 (new Belle) M(BW) = 3872. 6+0. 5 -0. 4 Me. V (BW) = 3. 9+2. 5 -1. 3+0. 5 -0. 3 Me. V 2 lower than Ba. Bar and prev. Belle Yu. S. Kalashnikova, ITEP 13

What is X(3872)? Ø D 0 D*0 molecule/virtual state (what is the nature of

What is X(3872)? Ø D 0 D*0 molecule/virtual state (what is the nature of attraction? ) Ø Tetraquark (where are charged partners? ) Ø Conventional 23 P 1 charmonium (why is it so light? ) How many X’s are there? Yu. S. Kalashnikova, ITEP 14

Yu. S. Kalashnikova, ITEP 15

Yu. S. Kalashnikova, ITEP 15

What are vector Ys? Ø Conventional 1 -- charmonia (misplaced? ) Ø Tertaquarks Ø

What are vector Ys? Ø Conventional 1 -- charmonia (misplaced? ) Ø Tertaquarks Ø Vector hybrids Ø Threshold effects: M(DD 1)=4285 Me. V M(D*D 0)=4360 Me. V Yu. S. Kalashnikova, ITEP 16

Key observations: Yu. S. Kalashnikova, ITEP 17

Key observations: Yu. S. Kalashnikova, ITEP 17

Yu. S. Kalashnikova, ITEP 18

Yu. S. Kalashnikova, ITEP 18

Y(4260) and Y(4350) are not seen in D(*) modes 1 -- ccg hybrid does

Y(4260) and Y(4350) are not seen in D(*) modes 1 -- ccg hybrid does not decay into D(*) M(1 -- ccg) 4400 Ge. V (Lattice + QCD string) Coupled channels DD 1 <-> h <-> D*D 0 may push the mass down? Yu. S. Kalashnikova, ITEP 19

Z+ particles: Charged charmonia: necessarily exotic! Yu. S. Kalashnikova, ITEP 20

Z+ particles: Charged charmonia: necessarily exotic! Yu. S. Kalashnikova, ITEP 20

B -> Z(4430)+K -> (2 S) +K M = 4433 4 2 Me. V

B -> Z(4430)+K -> (2 S) +K M = 4433 4 2 Me. V = 45+18 -13+30 -13 Me. V No confirmation from Ba. Bar: Yu. S. Kalashnikova, ITEP 21

New charged states in B 0 -> Z- K+ -> c 1 -K+ Z

New charged states in B 0 -> Z- K+ -> c 1 -K+ Z 1(4050) M = 4051 14+20 -41 Me. V = 82+21+17 -17 -22 Me. V Z 2(4250) M = 4248+44+180 -29 -35 Me. V = 177+54+316 -39 -61 Me. V Yu. S. Kalashnikova, ITEP 22

What are charged Zs? Ø Tetraquark states Ø Strong charmonium-pion interaction Ø Threshold effect:

What are charged Zs? Ø Tetraquark states Ø Strong charmonium-pion interaction Ø Threshold effect: Z(4430) vs D*D 1@4430 Me. V Z 1(4050) vs D*D*@4020 Me. V Z 2(4250) vs DD 1@4285 Me. V Yu. S. Kalashnikova, ITEP 23

Conclusions: Ø New charmonia are exciting! Ø New era has become possible due to

Conclusions: Ø New charmonia are exciting! Ø New era has become possible due to B-factories Ø However, number of events is tiny (compare tens of X(3872) events @ Belle+Ba. Bar to hundreds of X(3872) events @ CDF +D 0) Ø Missing D-wave states are not found PANDA: great expectations Yu. S. Kalashnikova, ITEP 24