CALICE Calorimetry for LC Physics motivation Calorimetry Design

  • Slides: 16
Download presentation
CALICE Calorimetry for LC < Physics motivation < Calorimetry } Design Considerations } CALICE

CALICE Calorimetry for LC < Physics motivation < Calorimetry } Design Considerations } CALICE } Status < Future < Summary Nigel Watson / CCLRC-RAL PPD 168 physicists 28 institutes 8 countries UK: Bham, Cambridge, Imperial Manchester, RAL, UCL RAL, 25 -Jan-2005

High Performance Calorimetry Mass (jet 3+jet 4) < Essential to reconstruct jet-jet invariant masses

High Performance Calorimetry Mass (jet 3+jet 4) < Essential to reconstruct jet-jet invariant masses in hadronic final states, e. g. separation of W+W , Z 0 Z 0, tth, Zhh E/E =optimal 60%/ E 30%/ E < LEP/SLD: jet reconstruction by E/E energy=flow } Explicit association of tracks/clusters } Replace poor calorimeter measurements with tracker measurements – no “double counting” Equivalent best LEP detector Feasible at LC Little benefit from beam energy constraint, cf. LEP } Charged particles (62%): measured in tracker } Photons (27%): ECAL separates ’s from hadronic debris } Neutral Mass hadrons (10%): ECAL & HCAL (jet 1+jet 2) Mass (jet 1+jet 2) Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

ECAL Design Principles < Measure 100% EM energy } shower containment in ECAL, X

ECAL Design Principles < Measure 100% EM energy } shower containment in ECAL, X 0 large < Resolve energy deposited by individual particles } small Rmoliere and X 0 – compact and narrow showers < Separation of hadronic/EM showers } int/X 0 large, EM showers early, hadronic showers late < Minimal material in front of calorimeters < Strong magnetic field } lateral separation of neutral/charged particles } keeps a lot of background inside beampipe ECAL, HCAL inside coil (cost!) < Active medium: Silicon Þ Pixel readout, minimal interlayer gaps, stability Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

CALICE Programme Catcher Hcal Ecal < Fine granularity calorimetry for energy/particle flow < Integrated

CALICE Programme Catcher Hcal Ecal < Fine granularity calorimetry for energy/particle flow < Integrated ECAL/HCAL R&D, both h/w and s/w < Technology demonstration < Validate simulation, Nigel Watson / CCLRC-RAL PPD allow design optimisation RAL, 25 -Jan-2005

Test Beam Prototypes Ecal < Combined ECAL & HCAL Hcal 1 m < 1/2005:

Test Beam Prototypes Ecal < Combined ECAL & HCAL Hcal 1 m < 1/2005: DESY, 6 Ge. V e-, (ECAL only) < 9/2005+: physics run at FNAL MTBF p/p+ beam < ECAL: 30 layers < HCAL: 40 layers Fe + Beam monitor Silicon } “digital” pads Þ GEM, RPC Þ 350 k, 1 x 1 cm 2 } “analogue” tiles Þ scintillator tiles Þ (8 k, 5 x 5 cm 2) Moveable < Tail catcher/muon tracker steel table } 8 x 2 cm layers, 8 x 10 cm } 5 cm scintillator strips Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

UK Effort < Simulation studies } ECAL cost/performance optimisation } Impact of hadronic/electromagnetic modelling

UK Effort < Simulation studies } ECAL cost/performance optimisation } Impact of hadronic/electromagnetic modelling on design. } Comparisons of Geant 4/Geant 3/Fluka < Provide readout electronics for the ECAL (+HCAL) } DAQ for entire system } Readout and DAQ for test beam prototype < Reconstruction/Energy Flow } Started work towards ECAL/HCAL reconstruction } Ultimate goal – Generic energy flow algorithm Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

<No. HCAL cells hit/event>, 10 Ge. V p G 4 G 3 G 4+Fluka

<No. HCAL cells hit/event>, 10 Ge. V p G 4 G 3 G 4+Fluka 1 < RPC HCAL more stable vs. model than scint. < Models incorporating FLUKA >20% above G 4 -LHEP Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

ECAL Electronics < 30 layer prototype = 9720 channels < 6 x 9 U

ECAL Electronics < 30 layer prototype = 9720 channels < 6 x 9 U VME boards } 18 fold multiplexed analogue from 96 VFE chips } On board buffering for 2 k events < Based on CMS FED } Saved time < Designed/built Imperial, RAL ID, UCL < Prototypes 11/2003, pre-prodn. 5/2004 < Board fab. 10/2004 < AHCAL/TC now to use these also } 7 more boards ordered from RAL Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

ECAL Prototype Overview • 30 layers of variable thickness Tungsten • Active silicon layers

ECAL Prototype Overview • 30 layers of variable thickness Tungsten • Active silicon layers interleved • Front end chip and readout on PCB board 20 0 m • Signals sent to DAQ m • PCB, with VFE • 14 layers, 2. 1 mm thick • Analogue signals DAQ • W layers wrapped in carbon fibre • PCB+Si layers: 8. 5 mm 360 mm 62 mm 360 mm • 6 x 6 1 x 1 cm 2 Si pads • Conductively glued to PCB Nigel Watson / CCLRC-RAL PPD 62 mm RAL, 25 -Jan-2005

Mechanical structure for Test. Beam Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

Mechanical structure for Test. Beam Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

Production & Testing • PCB designed in LAL-Orsay, made in Korea (KNU) • 60

Production & Testing • PCB designed in LAL-Orsay, made in Korea (KNU) • 60 Required for Prototype • Automation, glue : EPO-TEK® EE 129 -4 • Glue/place ( 0. 1 mm) of 270 wafers with 6× 6 pads • ~ 10 k points of glue. • Production line set up at LLR Mounting/gluing the wafers Using a frame of tungsten wires 12 VFE chips 6 active silicon wafers Nigel Watson / CCLRC-RAL PPD 2 calibration switch chips Line Buffers To DAQ RAL, 25 -Jan-2005

Cosmics Tests Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

Cosmics Tests Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

Cosmics Tests: Single Layer Scintillator X-Z plane Y-Z plane Wafer Scintillator • Example of

Cosmics Tests: Single Layer Scintillator X-Z plane Y-Z plane Wafer Scintillator • Example of Cosmic Event • Passes through scintillators • Extrapolated through silicon • Clear signal above background • Full readout chain used Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

Cosmics Tests, 10 layers Dec. 2004 10 layers assembled LLR 2 production CRC boards

Cosmics Tests, 10 layers Dec. 2004 10 layers assembled LLR 2 production CRC boards >106 events over Christmas S/N ~ 9 This event, Jan. 4 Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

1 st Beam Data From DESY Jan. 2005 12 th, H/W arrived DESY 13

1 st Beam Data From DESY Jan. 2005 12 th, H/W arrived DESY 13 -4 th, assembled 17 th, 1 st beam recorded This event, Jan. 18 6 Ge. V e Nigel Watson / CCLRC-RAL PPD RAL, 25 -Jan-2005

Calice UK Future Plans < 3 year programme, 2005 -08 } Fits well with

Calice UK Future Plans < 3 year programme, 2005 -08 } Fits well with schedule for C/TDR < Topics } Existing test beam programme } DAQ } MAPS – digital ECAL } Mechanical/Thermal } Simulation < RHUL recently joined, interest from 1 other group flagged to PPRP < CALICE already a global enterprise, all regions < Large scope for expansion ($$ MAPS, DAQ, endcaps? ) < Interesting times ahead! See thisto& PPRP otherreview, docs at 1 http: //www. hep. ph. ic. ac. uk/~calice/ Come Feb. 2005, 10 am, Senate House, Nigel Watson / CCLRC-RAL PPD London, RAL, 25 -Jan-2005