1 Point registration via efficient convex relaxation Haggai Maron, Nadav Dym, Itay Kezurer, Shahar Kovalsky, Yaron Lipman Weizmann Institute of Science
2 Orthogonal Procrustes Problem Orthogonal
3 Procrustes matching (PM) Permutation Orthogonal
4 Procrustes matching (PM) Orthogonal Given Orthogonal Point clouds Permutation
5 Motivation embedding 3 D Non Rigid Alignment High dimensional Rigid Alignment [Jain et al. 2006, Ovsjanikov et al. 2008]
6 Previous work: Low dimensional PM • RANSAC [Fischler and Bolles 1981] Exponential in the dimension • Combinatorial optimization [Gelfand et al. 2005, Yang et al. 2013] Worst case: exponential • ICP [Besl and Mckey 1992] Only local minimum guaranteed
7 Previous work: Shape matching • Functional maps [Ovsjanikov et al. 2012] Depends on functional correspondences • SDP relaxations [Kezurer et al. 2015] Works for small-scale problems • LP relaxations [Chen and Koltun, 2015] Relies on extrinsic alignment
32 Isometric matching SCAPE Raw Scans Source [Anguelov at al. 05] Target
33 Non-Isometric matching % Correspondences FAUST Source [Bogo et al. 14] Target Intra subject Inter subject
34 Non-Isometric matching [Giorgi et al. 07] SHREC 07’ Failure
35 Limitations •
36 Summary •
37 Acknowledgments: - European Research Council (ERC Starting Grant) - Israel Science Foundation Thank you! • Code Available online! http: //www. wisdom. weizmann. ac. il/~haggaim/ • More results in the paper! Anatomical classification Collection alignment