Terrestrial Life in Space What Can We Learn

  • Slides: 26
Download presentation
Terrestrial Life in Space What Can We Learn From Cells? Neal R. Pellis, Ph.

Terrestrial Life in Space What Can We Learn From Cells? Neal R. Pellis, Ph. D. Director Division of Space Life Sciences Universities Space Research Association Houston, TX 77058 pellis@dsls. usra. edu

Clinical Problems in Space • • • • Visual impairment Exposure to ionizing radiation

Clinical Problems in Space • • • • Visual impairment Exposure to ionizing radiation Bone density decrease Muscle Atrophy Cardiovascular Deconditioning Psychosocial impacts Vestibular Dysfunction Hematological changes Immune Dysfunction Delayed wound healing Gastrointestinal Distress Orthostatic Intolerance Fluid Shifting Renal stones Nutrition

Paradigms Lost • The Earth is the center of the universe • Blood letting

Paradigms Lost • The Earth is the center of the universe • Blood letting ameliorates most disease • Accumulations of old rags in the attic spontaneously generate rats • Read my lips, no new taxes… • I never inhaled… • Humans cannot survive outside the Earth’s environment • Cellular and intracellular components are too insignificant in mass to be affected by the loss of gravity

"There is a place in your brain, I think, reserved for 'the melancholy of

"There is a place in your brain, I think, reserved for 'the melancholy of relationships past. ' It grows and prospers as life progresses, forcing you finally, against your grain, to listen to country music. " (K. B. Mullis et al. , eds. , The Polymerase Chain Reaction, Birkhauser: Boston, 1995, p. 427).

Terrestrial Life and Microgravity • As life evolved on earth a multiplicity of physical

Terrestrial Life and Microgravity • As life evolved on earth a multiplicity of physical and chemical factors invoked adaptations and participated in the complicated selection process • For many factors there are clear examples of the role of changing physical forces in evolution • A notable exception is gravity. It has been constant for the 4. 8 billion years • Therefore, there is little or no genetic memory of life responding to force changes in the low gravity range

Why Space Cell Biology? • As is true for terrestrial based biomedicine, analysis of

Why Space Cell Biology? • As is true for terrestrial based biomedicine, analysis of the cellular response to microgravity offers the prospect of elucidating underlying mechanisms that can be the basis for effective treatment. • Observation of the cellular response to variation in ‘G’ reveals novel adaptive mechanisms. • Understanding basic cellular mechanisms necessary for the adaptation of terrestrial life to low gravity environments

Interactions in Nature • • Gravitational Electromagnetic Strong submolecular forces Weak submolecular forces

Interactions in Nature • • Gravitational Electromagnetic Strong submolecular forces Weak submolecular forces

Interactions in Nature • Gravity is the weakest of the four but has a

Interactions in Nature • Gravity is the weakest of the four but has a vast radius of influence • Among the four, gravity is considered the sculptor of the universe • Methods for studying gravitational influences on biological processes (Microgravity Analogs) – – Theoretical analysis and computer modeling Changing the weight loading Hypergravity Free fall strategies – Space experiments

An Important Question in Space Biology The Relationship Between Gravity and Biological Activity Hyper

An Important Question in Space Biology The Relationship Between Gravity and Biological Activity Hyper G ? Known response suites and relationships Your favorite Biological Response m. G The vast zone of the unknown -6 -5 -4 -3 -2 -1 Log 10 Gravity 0 1

An Important Question in Space Biology The Relationship Between Gravity and Biological Activity Hyper

An Important Question in Space Biology The Relationship Between Gravity and Biological Activity Hyper G ? Known response suites and relationships Your favorite Biological Response m. G The vast zone of the unknown -6 -5 -4 -3 -2 -1 Log 10 Gravity 0 1

Hypothesis: Relationship Between Gravity and Biological Activity Your favorite Biological Response (%of Earth Gravity)

Hypothesis: Relationship Between Gravity and Biological Activity Your favorite Biological Response (%of Earth Gravity) Fractional-G 100 75 50 Moon Mars 25 -1. 2 ? -1. 0 -0. 8 -0. 6 -0. 4 Log 10 Gravity Earth -0. 2 0

Areas of Investigation for Space Exploration • • • Basic human physiology Plant life

Areas of Investigation for Space Exploration • • • Basic human physiology Plant life used for O 2 and for food Bioregenerative microbes Normal flora Environmental monitoring Exploration proes Areas of Investigation for Applied Science • Tissue engineering • Vaccine and drug development • Models of human disease • Living reporter sensors

Fundamental Questions • What is the basis of the cellular response to microgravity? –

Fundamental Questions • What is the basis of the cellular response to microgravity? – Intrinsic response in the cell (gravisensor? ) – Cellular response to environmental changes induced by gravity • • Shear Mass transfer Surface contact No sedimentation • How is response different in microbial cells (that are bound by a cell wall) vs. eukaryotic/mammalian cells that do not have a cell wall? • How do changes in individual cells relate to tissues, organs, and organisms? • How does microgravity change cell response thresholds to other stimuli (radiation, magnetic fields, shear, toxins, other chemicals)?

Scientific Questions to Address • Adaptive responses of cells to microgravity and to the

Scientific Questions to Address • Adaptive responses of cells to microgravity and to the space environment? • Phenotypic and genotypic changes induced by microgravity, space, and planetary environments? • Does the space environment invoke a selective pressure on replicating cells? • How much ‘G’ is required to maintain normal function? • What new cell biology applications can be achieved in low gravity environments? 14

Practical Questions • How do changes in individual cells relate to tissues, organs, and

Practical Questions • How do changes in individual cells relate to tissues, organs, and organisms? • How does microgravity change cell response thresholds to other stimuli (radiation, magnetic fields, shear, toxins, other chemicals)? • Can we use cells to conduct missions with unknown consequences? 15

Analog Systems To investigate the cellular and tissue responses to microgravity it was essential

Analog Systems To investigate the cellular and tissue responses to microgravity it was essential to design systems that approximate the some of the microgravity conditions and provide the opportunity to study these phenomena on Earth in a more controlled and available venue 6 o Head Down Tilt Bedrest Drop Tower Isopycnic Solution (Neutral Buoyancy) Suborbital Rockets Parabolic Flight Centrifugation Hyper G Magnetic Levitation Solid Body Fluid Rotation Superconducting Magnet Diamagnetic

Unique aspects of m. G • • • No sedimentation Loss of gravity driven

Unique aspects of m. G • • • No sedimentation Loss of gravity driven convection Decreased hydrodynamic shear No hydrostatic pressure Mass transfer is limited to the rate of diffusion

Animal Cells in Space m. G Changes: 1 G fluid distribution gene expression signal

Animal Cells in Space m. G Changes: 1 G fluid distribution gene expression signal transduction locomotion differentiation Metabolism glycosylation 1 G

Theory of the Effect of m. G on Mammalian Cells m G 1 G

Theory of the Effect of m. G on Mammalian Cells m G 1 G Potential Change in membrane: Structure Composition Bileaflet organization Lipid rafts Association with the cytoskeleton Perhaps the ‘forced’ shape change induces a cascade of responses otherwise unrelated to m. G

Bacteria in Space m. G Changes: Bacillus spacecowboyum 1 G Gene expression Shift to

Bacteria in Space m. G Changes: Bacillus spacecowboyum 1 G Gene expression Shift to secondary metabolism Quorum sensing? Virulence Mechano-responsive mechanisms Replication rates Biofilm formation 1 G

Theory of the Effect of m. G on Bacterial Cells Response of cell with

Theory of the Effect of m. G on Bacterial Cells Response of cell with non pliant cell walls Bacteria 1 G m. G ? ? Pin<<Pout? ? In bacteria, the cell wall is a rigid structure that surrounds the cell membrane. Perhaps the decrease in gravity accentuates the attractive forces between fatty acid side chains of triglycerides resulting in outward force on the wall. This in turn activates mechano- and baroresponsive mechanisms leading to the phenotypes seen in space May be applicable to plant cells

Cellular Responses to m. G • • • Signal transduction Shape change Gene expression

Cellular Responses to m. G • • • Signal transduction Shape change Gene expression DNA damage Cell division rates Orientation of subcellular components – Changes in nucleoli morphology – Synthesis and orientation of macromolecules – Cytoskeleton • • Programmed cell death Cellular movement Cellular repair Cytokine synthesis and secretion Glycosylation Differentiation and tissue morphogenesis Biofilm formation and deposition

Physical Factors to Consider in Experimental Design • • Gravity Mechanical impacts Hydrodynamic shear

Physical Factors to Consider in Experimental Design • • Gravity Mechanical impacts Hydrodynamic shear Convection Vibration Radiation Barometric Pressure Hydrostatic pressure gradients

Significance • There is little doubt that cells as representative of terrestrial life respond

Significance • There is little doubt that cells as representative of terrestrial life respond decreased gravity environments. • The mechanism of gravity induced responses in cells is unknown. • Nevertheless, microgravity affords a unique tool to probe the underlying mechanisms in life systems at the cellular and organismal level. • We plan use of this tool • novel ways to increase our understanding of the role of gravity in life processes • to achieve goals in applied biological science and technology development • to elucidate the long term effects of microgravity on terrestrial life by using cells as explorers

Obstacles in Colonizing Space • • Financial Political and philosophical Propulsion Dealing with the

Obstacles in Colonizing Space • • Financial Political and philosophical Propulsion Dealing with the reality that it could be a multi-generational mission • Managing health • Managing the logistics • Decreasing the energy requirements for life?

We are going to have to learn by exploring the Solar System • Candidates

We are going to have to learn by exploring the Solar System • Candidates for colonization are: – The Moon – Mars • Candidates for exploration – Europa (Moon of Jupiter) – Titan (Moon of Saturn) – Encelaedus (Moon of Saturn)