T EDM P Spin EDM Spin Search for

  • Slides: 21
Download presentation
+ + T + _ _ EDM _ P Spin EDM Spin Search for

+ + T + _ _ EDM _ P Spin EDM Spin Search for the Schiff Moment of Radium-225 Zheng-Tian Lu Physics Division, Argonne National Laboratory Department of Physics, University of Chicago

EDM Searches in Three Sectors Quark EDM Nucleons (n, p) Nuclei (Hg, Ra, Rn)

EDM Searches in Three Sectors Quark EDM Nucleons (n, p) Nuclei (Hg, Ra, Rn) Quark Chromo-EDM Electron in paramagnetic molecules (Yb. F, Th. O) Electron EDM Physics beyond the Standard Model: SUSY, etc. Sector Exp Limit (e-cm) Method Standard Model Electron 9 x 10 -29 Th. O in a beam 10 -38 Neutron 3 x 10 -26 UCN in a bottle 10 -31 199 Hg 3 x 10 -29 Hg atoms in a cell 10 -33 M. Ramsey-Musolf (2009)

The Seattle EDM Measurement 199 Hg stable, high Z, groundstate 1 S 0, I

The Seattle EDM Measurement 199 Hg stable, high Z, groundstate 1 S 0, I = ½, high vapor pressure E Optical Pumping E 7 p 3 P 1 m. F = -1/2 F = 1/2 m. F = +1/2 Courtesy of Michael Romalis s+ 7 s 2 1 S 0 F = 1/2 m = -1/2 F m. F = +1/2

The Seattle EDM Measurement 199 Hg stable, high Z, groundstate 1 S 0, I

The Seattle EDM Measurement 199 Hg stable, high Z, groundstate 1 S 0, I = ½, high vapor pressure E E Courtesy of Michael Romalis Limits and Sensitivities • Current: < 3 x 10 -29 e-cm -- Griffith et al. , PRL (2009) • Next 5 years: 3 x 10 -30 e-cm • Beyond 2020: 6 x 10 -31 e-cm 15 Hz f

1 S 0

1 S 0

EDM of 225 Ra enhanced and more reliably calculated • Closely spaced parity doublet

EDM of 225 Ra enhanced and more reliably calculated • Closely spaced parity doublet – Haxton & Henley, PRL (1983) • Large Schiff moment due to octupole deformation – Auerbach, Flambaum & Spevak, PRL (1996) • Relativistic atomic structure (225 Ra / 199 Hg ~ 3) – Dzuba, Flambaum, Ginges, Kozlov, PRA (2002) Parity doublet |a - = |b (|a - |b )/ 2 55 ke. V + = (|a + |b )/ 2 Enhancement Factor: EDM (225 Ra) / EDM (199 Hg) Isoscalar Isovector Skyrme SIII 300 4000 Skyrme Sk. M* 300 2000 Skyrme SLy 4 700 8000 Schiff moment of 225 Ra, Dobaczewski, Engel, PRL (2005) Schiff moment of 199 Hg, Dobaczewski, Engel et al. , PRC (2010) “[Nuclear structure] calculations in Ra are almost certainly more reliable than those in Hg. ” – Engel, Ramsey-Musolf, van Kolck, Prog. Part. Nucl. Phys. (2013) Constraining parameters in a global EDM analysis. – Chupp, Ramsey-Musolf, ar. Xiv 1407. 1064 (2014)

EDM measurement on 225 Ra in a trap 225 Ra: I=½ t 1/2 =

EDM measurement on 225 Ra in a trap 225 Ra: I=½ t 1/2 = 15 d Collaboration of Argonne, Kentucky, Michigan State • Efficient use of the rare 225 Ra atoms • High electric field (> 100 k. V/cm) Oven: 225 Ra • Long coherence time (~ 100 s) • Negligible “v x E” systematic effect Transverse cooling Zeeman Slower Magneto-optical Trap (MOT) Statistical uncertainty 100 d 100 k. V/cm 100 s 106 Long-term goal: dd = 3 x 10% 10 -28 e cm EDM measurement Optical dipole trap (ODT)

Trap Lifetimes Magneto-Optical Trap (MOT) in the first trap chamber Optical Dipole Trap (ODT)

Trap Lifetimes Magneto-Optical Trap (MOT) in the first trap chamber Optical Dipole Trap (ODT) in the EDM chamber

Optical Dipole Trap • Fiber laser: l = 1550 nm, Power = 40 Watts

Optical Dipole Trap • Fiber laser: l = 1550 nm, Power = 40 Watts • Focused to 100 mm trap depth 400 m. K EDM in an optical dipole trap – Fortson & Romalis (1999) • • • v x E , Berry’s phase effects suppressed Cold scattering suppressed between cold Fermionic atoms Rayleigh scat. rate ~ 10 -1 s-1 ; Raman scat. rate ~ 10 -12 s-1 Vector light shift ~ m. Hz Parity mixing induced shift negligible Conclusion: possible to reach 10 -30 e cm for 199 Hg

Apparatus Argonne National Lab 10

Apparatus Argonne National Lab 10

Preparation of Cold Radium Atoms for EDM • 2006 – Atomic transitions identified and

Preparation of Cold Radium Atoms for EDM • 2006 – Atomic transitions identified and studied; N. D. Scielzo et al. , PRA Rapid 73, 010501 (2006) J. R. Guest et al. , PRL 98, 093001 (2007) • 2007 – Magneto-optical trap (MOT) of radium realized; • 2010 – Optical dipole trap (ODT) of radium realized; R. H. Parker et al. , PRC 86, 065503 (2012) • 2011 – Atoms transferred to the measurement trap; • 2012 – Spin precession of Ra-225 in ODT observed; • 2014 – Attempt to measure EDM of Ra-225. MOT & ODT Precession frequency: Sideview Head-on view ODT 0. 04 mm 11

B & E Fields Installed EDM (d) measurement: B = 10 m. G E

B & E Fields Installed EDM (d) measurement: B = 10 m. G E = 100 k. V/cm

Spin Precession – Oct, 2014 Expected period = 56(6) ms Period = 69(11) ms

Spin Precession – Oct, 2014 Expected period = 56(6) ms Period = 69(11) ms Period = 70(10) ms

Absorption Detection of Spin State F = 3/2 1 P 1 Photons scattering events

Absorption Detection of Spin State F = 3/2 1 P 1 Photons scattering events 2 -3 photons per atom F = 1/2 Signal-to-noise Ratio For 100 atoms, SNR ~ 0. 2 483 nm 1 S 0 F = 1/2 m. F = -1/2 +1/2 Ra-226 Atom number detection Ra-225 Spin detection

STIRAP (stimulated Raman adiabatic passage) F = 3/2 1 P 1 F = 1/2

STIRAP (stimulated Raman adiabatic passage) F = 3/2 1 P 1 F = 1/2 1429 nm 483 nm 3 D 1 S 0 1 F = 1/2 m. F = -1/2 +1/2 Stimulated, Adiabatic process No fluorescence

Absorption Detection on a Cycling Transition m. F = +3/2 F = 3/2 1

Absorption Detection on a Cycling Transition m. F = +3/2 F = 3/2 1 P 1 Photons scattering events 2 -3 photons per atom 100 -1000 photons per atom F = 1/2 Signal-to-noise Ratio For 100 atoms, SNR ~ 0. 2 For 100 atoms, SNR ~ 10 483 nm 3 D 1 S 0 F = 1/2 m. F = -1/2 +1/2 1

7 p 1 P 6 ns 7 p 1 P 11 6 ns P

7 p 1 P 6 ns 7 p 1 P 11 6 ns P Puum m p p #1 #1 6 d 1 D 2 430 ms 420 ns 7 p 3 P 11 Slo w& Tr. Ta rpa, p 7 , 1741 n 4 m nm 6 d 3 D 2 7 s 2 1 S 00 6 d 3 D 11 Improve trapping efficiency with a blue upgrade

7 p 1 P 6 ns 7 p 1 P 11 6 ns Pu

7 p 1 P 6 ns 7 p 1 P 11 6 ns Pu 3 # mp P Puum m p p #1 #1 #2 Scheme 420 ns 7 p 3 P 11 6 d 3 D 2 Slo w& Tr. Ta rpa, p 7 , 1741 n 4 m nm Slow, 483 nm p m Pu 6 d 1 D 2 430 ms Improve trapping efficiency with a blue upgrade 7 s 2 1 S 00 6 d 3 D 11 KVI barium trap S. De et al. PRA (2009) • 1 st slowing laser: 483 nm (strong) • 2 nd slowing laser: 714 nm • 3 repumpers: 1428 nm, 1488 nm, 2. 75 mm • 171 Yb as co-magnetometer * 225 Ra and 171 Yb trapped, < 50 mm apart Benefits • 100 times more atoms in the trap • Improved control on systematic uncertainties

233 U 225 Ra Yields a 225 Ac a Fr, Rn, … ~4 hr

233 U 225 Ra Yields a 225 Ac a Fr, Rn, … ~4 hr 10 d 229 Th b a 7. 3 kyr 225 Ra 15 d Presently available • National Isotope Development Center, ORNL • Decay daughters of 229 Th 225 Ra: Projected • FRIB (B. Sherrill, MSU) • Beam dump recovery with a 238 U beam • Dedicated running with a 232 Th beam 6 x 109 /s 5 x 1010 /s • • 159 kyr ISOL@FRIB (I. C. Gomes and J. Nolen, Argonne) • Deuterons on thorium target, 1 m. A x 400 Me. V = 400 k. W 1013 /s MSU K 1200 (R. Ronningen and J. Nolen, Argonne) • Deuterons on thorium target, 10 u. A x 400 Me. V = 4 k. W 1011 /s 108 /s 19

Outlook • 2014 -2015 • Implement STIRAP – more efficient way to detect spin;

Outlook • 2014 -2015 • Implement STIRAP – more efficient way to detect spin; • Longer trap lifetime; • 2015 -2018, blue upgrade – more efficient trap; • Five-year goal (before FRIB): 10 -26 e cm; • 2020 and beyond (at FRIB): 3 x 10 -28 e cm; • Far future: search for EDM in diatomic molecules • Effective E field is enhanced by a factor of 103; • Reach the Standard Model value of 10 -30 e cm.

“Cold” Atom Trappers Argonne: Kevin Bailey, Michael Bishof, John Greene, Roy Holt, Nathan Lemke,

“Cold” Atom Trappers Argonne: Kevin Bailey, Michael Bishof, John Greene, Roy Holt, Nathan Lemke, Zheng-Tian Lu, Peter Mueller, Tom O’Connor, Richard Parker; Kentucky: Mukut Kalita, Wolfgang Korsch; Michigan State: Jaideep Singh; Northwestern: Matt Dietrich.