Nuclear Physics in Storage Rings Yuri A Litvinov

  • Slides: 32
Download presentation
Nuclear Physics in Storage Rings Yuri A. Litvinov 1. Broad band mass measurements 2.

Nuclear Physics in Storage Rings Yuri A. Litvinov 1. Broad band mass measurements 2. Beta decay of highly-charged ions 3. Nuclear magnetic moments 4. Nuclear reactions on thin targets 5. Capture reactions at low energies [(p, g), (a, g)…] 6. Reactions in inverse kinematics [15 O(a, g)19 Ne] 7. Experiments with isomeric beams 8. Experiments with polarized beams Institute of Theoretical Physics (ITP), CAS, Beijing 10. 06. 2010 Max-Planck-Institut für Kernphysik, Heidelberg

Beta-decay on the Chart of Nuclides p-process rp-process ν p-process Astrophysical scenarios: high temperature

Beta-decay on the Chart of Nuclides p-process rp-process ν p-process Astrophysical scenarios: high temperature = high degree of ionization fussion

Half-life modifications Fundamental question: “Can we change the nuclear decay rate or it is

Half-life modifications Fundamental question: “Can we change the nuclear decay rate or it is a basic property ? !“ Pressure, Temperature, Electromagnetic fields, Chemistry. . . G. T. Emery, Annu. Rev. Nucl. Sci. 22 (1972) 165: Effects of less than 1% Modification of the electron density at the nucleus

Highly-Charged Ions W. R. Phillips, et al. , Phys. Rev. Lett. 62 (1989) 1025

Highly-Charged Ions W. R. Phillips, et al. , Phys. Rev. Lett. 62 (1989) 1025 W. R. Phillips, et al. , Phys. Rev. A 47 (1993) 3682 Internal conversion in few-electron 57 Fe ions F. Attallah, et al. , Phys. Rev. C 55 (1997) 1665 Internal conversion in few-electron 125 Te ions Half-life prolongations ranging from a few 10% up to 670% F. F. Karpeshin, et al. , Phys. Rev. C 53 (1996) 1640 M. R. Harston, et al. , Nucl. Phys. A 676 (2000) 143 New decay mode: Bound Internal Conversion (BIC)

Two-body beta decay of stored and cooled highlycharged ions

Two-body beta decay of stored and cooled highlycharged ions

Production, storage and cooling of HCI at GSI Storage Ring ESR Fragment Separator FRS

Production, storage and cooling of HCI at GSI Storage Ring ESR Fragment Separator FRS Production target Linear Accelerator UNILAC Heavy-Ion Synchrotron SIS

ESR : Emax = 420 Me. V/u, 10 Tm; e-, stochastic cooling ESR: B.

ESR : Emax = 420 Me. V/u, 10 Tm; e-, stochastic cooling ESR: B. Franzke, NIM B 24/25 (1987) 18 Stochastic cooling: F. Nolden et al. , NIM B 532 (2004) 329 Electron cooling: M. Steck et al. , NIM B 532 (2004) 357

Electron Cooling momentum exchange with 'cold', collinear e- beam. The ions get the sharp

Electron Cooling momentum exchange with 'cold', collinear e- beam. The ions get the sharp velocity of the electrons, small size and divergence

SMS 4 particles with different m/q time

SMS 4 particles with different m/q time

SMS Sin(w 1) Sin(w 2) Fast Fourier Transform time Sin(w 3) w 4 Sin(w

SMS Sin(w 1) Sin(w 2) Fast Fourier Transform time Sin(w 3) w 4 Sin(w 4) w 3 w 2 w 1

SMS: Broad Band Frequency Spectra

SMS: Broad Band Frequency Spectra

Nuclear Decays of Stored Single Atoms Time-resolved SMS is a perfect tool to study

Nuclear Decays of Stored Single Atoms Time-resolved SMS is a perfect tool to study dynamical processes in the ESR Nuclear electron capture, β+, β- and bound-β decays were observed

Fully-Ionized Atoms John N. Bahcall, “Theory of Bound-State Beta Decay”, Phys. Rev. 124 (1961)

Fully-Ionized Atoms John N. Bahcall, “Theory of Bound-State Beta Decay”, Phys. Rev. 124 (1961) 495 John N. Bahcall, “Beta Decay in Stellar Interiors”, Phys. Rev. 126 (1962) 1143 Koji Takahashi, Koichi Yokoi, “Nuclear Beta-Decays of Highly-Ionized Heavy Atoms in Stellar Interiors”, Nucl. Phys. A 404 (1983) 578 Koji Takahashi, Koichi Yokoi, “Beta-Decay Rates of Highly-Ionized Heavy Atoms in Stellar Interiors”, Atomic Data Nucl. Data Tables 36 (1987) 375

Half-Lives of Nuclear Isomers laboratory frame Neutral atom is 0. 49(2) s Fully ionized

Half-Lives of Nuclear Isomers laboratory frame Neutral atom is 0. 49(2) s Fully ionized atom is 11(1) s T 1/2 (fully ionized) T 1/2 (neutral) = 22(2) Yu. A. Litvinov, et al. , PLB 573 (2003) 80 -85

Observation of 133 m. Sb isomeric state 17 s isomeric state in neutral 133

Observation of 133 m. Sb isomeric state 17 s isomeric state in neutral 133 Sb RIMS=200 000 Expected half-live of bare isomer: ~ 17 ms, t~991 A new half-live domain for storage-ring experiments B. Sun et al. , PLB 688 (2010) 294

Bound-State b-decay

Bound-State b-decay

Bound-State b-decay of 187 Re E The 7 Nuclear Clocks for the Age of

Bound-State b-decay of 187 Re E The 7 Nuclear Clocks for the Age of the Earth, the Solar System, the Galaxy, and the Universe 187 Re 75+ clock T½ = 33 y Q = 62 ke. V 40 K/40 Ar βb T 1/2[109 y] ( b) 238 U…Th… 206 Pb ( , b) 4. 5 ( , b) 14 232 Th…Ra… 208 Pb 9. 8 ke. V g. s. 187 Re 0 5/2+ β- 3/21/2 - 9. 8 ke. V g. s. T½ = 42 Gy; Q = 2. 7 ke. V 1. 3 176 Lu/176 Hf ( b) 30 187 Re/187 Os ( b) 42 87 Rb/87 Sr ( b) 147 Sm/143 Nd ( ) 50 100 Clayton (1964): a mother-daughter couple (187 Re/187 Os) is the “best” radioactive clock F. Bosch et al. , Phys. Rev. Lett. 77 (1996) 5190

Bound-State b-decay of 163 Dy s process: slow neutron capture and β- decay near

Bound-State b-decay of 163 Dy s process: slow neutron capture and β- decay near valley of β stability at k. T = 30 ke. V; → high atomic charge state → bound-state β decay p process Er Ho Dy 162 164 166 165 163 160 161 162 163 164 s process T 1/2 = 48 days r process branchings caused by bound-state β decay M. Jung et al. , Phys. Rev. Lett. 69 (1992) 2164

Bound-State b-decay in 206, 207 Tl λ = λb+λc+λR λb bound/continuum branching ratio T.

Bound-State b-decay in 206, 207 Tl λ = λb+λc+λR λb bound/continuum branching ratio T. Ohtsubo et al. , Phys. Rev. Lett. 95 (2005) 052501

Next Step: Bound-State b-decay of 205 Tl F. Bosch et al. , GSI Proposal

Next Step: Bound-State b-decay of 205 Tl F. Bosch et al. , GSI Proposal

Hydrogen-Like Ions I. Iben et al. , “The Effect of Be 7 K-Capture on

Hydrogen-Like Ions I. Iben et al. , “The Effect of Be 7 K-Capture on the Solar Neutrino Flux”, Ap. J. 150 (1967) 1001 L. M. Folan, V. I. Tsifrinovich, “Effects of the Hyperfine Interaction on Orbital Electron Capture”, Phys. Rev. Lett. 74 (1995) 499

Decay schemes H-like ions; g. s. → g. s. ; no third particle

Decay schemes H-like ions; g. s. → g. s. ; no third particle

EC in Hydrogen-like Ions Expectations: l. EC(H-like)/l. EC(He-like) ≈ 0. 5 140 Pr l.

EC in Hydrogen-like Ions Expectations: l. EC(H-like)/l. EC(He-like) ≈ 0. 5 140 Pr l. EC(H-like)/l. EC(He-like) = 1. 49(8) Yu. A. Litvinov et al. , Phys. Rev. Lett. 99 (2007) 262501 142 Pm l. EC(H-like)/l. EC(He-like) = 1. 44(6) N. Winckler et al. , Phys. Lett. B 579 (2009) 36

Electron Capture in Helium-like Ions Gamow-Teller transition 1+ → 0+ s = 1/2 I=0

Electron Capture in Helium-like Ions Gamow-Teller transition 1+ → 0+ s = 1/2 I=0 I=1 EC S=0 s = 1/2 F=1

Electron Capture in Hydrogen-like Ions Gamow-Teller transition 1+ → 0+ I=0 I=1 EC s

Electron Capture in Hydrogen-like Ions Gamow-Teller transition 1+ → 0+ I=0 I=1 EC s = 1/2 3/2 F=I+s 1/2 F = 1/2 Z. Patyk et al. , Phys. Rev. C 77 (2008) 014306

Electron Capture in Hydrogen-like Ions Gamow-Teller transition 1+ → 0+ S. Typel and L.

Electron Capture in Hydrogen-like Ions Gamow-Teller transition 1+ → 0+ S. Typel and L. Grigorenko µ = +2. 7812µN Z. Patyk Probability of EC Decay Neutral 140 Pr: P = 2. 381 He-like 140 Pr: P=2 H-like 140 Pr: P=3 Theory: The H-Like ion should really decay 20% faster than neutral atom! (2 I+1)/(2 F+1) Z. Patyk et al. , Phys. Rev. C 77 (2008) 014306

Next Step B. M. Dodsworth et al. , Phys. Rev. 142 (1966) 638. µ

Next Step B. M. Dodsworth et al. , Phys. Rev. 142 (1966) 638. µ (64 Cu) = − 0. 217(2) N

Some speculations on the EC-decay of 7 Be A. V. Gruzinov, J. N. Bahcall,

Some speculations on the EC-decay of 7 Be A. V. Gruzinov, J. N. Bahcall, Astroph. J. 490 (1997) 437 Ionization of 7 Be in the Sun can be ~ 20 -30 % Transition (F=1 F=1) is accelerated by (2 I+1)/(2 F 1+1) i. e. by 8/3 However, there are only (2 F 1+1)/((2 F 1+1)+(2 F 2+1)) = 3/8 of 7 Be in this state

Electron Capture in Hydrogen-like Ions 4 F=I+s 3 5 F=I+s Possibility to address the

Electron Capture in Hydrogen-like Ions 4 F=I+s 3 5 F=I+s Possibility to address the electron screening in beta decay under very clean conditions ! 4

Single-Particle Decay Spectroscopy

Single-Particle Decay Spectroscopy

Decay schemes H-like ions; g. s. → g. s. ; no third particle

Decay schemes H-like ions; g. s. → g. s. ; no third particle