KULIAH I MEKANIKA TEKNIK TI PENDAHULUAN OLEH ALIEF

  • Slides: 34
Download presentation
KULIAH I MEKANIKA TEKNIK TI PENDAHULUAN OLEH: ALIEF WIKARTA, ST JURUSAN TEKNIK MESIN, FTI

KULIAH I MEKANIKA TEKNIK TI PENDAHULUAN OLEH: ALIEF WIKARTA, ST JURUSAN TEKNIK MESIN, FTI – ITS SURABAYA, 2007

Apa itu Mekanika? Cabang ilmu fisika yang berbicara tentang keadaan diam atau geraknya benda-benda

Apa itu Mekanika? Cabang ilmu fisika yang berbicara tentang keadaan diam atau geraknya benda-benda yang mengalami kerja atau aksi gaya Mechanics Rigid Bodies (Things that do not change shape) Statics Dynamics Deformable Bodies (Things that do change shape) Fluids Incompressible Compressible

Buku apa yang dipakai? • R. C. Hibbeler, Engineering Mechanics, 7 th - 10

Buku apa yang dipakai? • R. C. Hibbeler, Engineering Mechanics, 7 th - 10 th Edition, Person Prentice-Hall • F. P. Beer and E. R. Johnston Jr. , Vector Mechanics for Engineers: Statics, SI Metric Edition, Mcgraw-hill, 3 rd Edition • R. C. Hibbeler, Mechanics of Material, 3 th Edition, Person Prentice-Hall • dll

Bagaimana evaluasinya ? • Tugas-Kuis : 25 % • UTS : 30 % •

Bagaimana evaluasinya ? • Tugas-Kuis : 25 % • UTS : 30 % • UAS : 45 % Tidak mentolerir segala bentuk kecurangan Tapi tetap boleh cross check

Penjelasan TUGAS • Dikerjakan pada kertas A 4 • Tulis nama dan NRP di

Penjelasan TUGAS • Dikerjakan pada kertas A 4 • Tulis nama dan NRP di sebelah kanan atas, serta tanggal dan tugas ke berapa • Silahkan mengerjakan soal apa saja yang berkaitan dengan materi yang disampaikan • Silahkan mengerjakan berapa pun soal yang sanggup anda selesaikan • Soal-soal harus dari buku yang disepakati • Mencantumkan judul buku, pengarang, dan nomer soal yang dikerjakan, plus halaman buku

Apa saja yang dipelajari? • Keseimbangan partikel • Keseimbangan benda tegar • Diagram gaya

Apa saja yang dipelajari? • Keseimbangan partikel • Keseimbangan benda tegar • Diagram gaya normal, diagram gaya geser, dan diagram momen • Konsep tegangan • Momen inersia dan momen polar • Teori kegagalan statis

Apa pentingnya mekanika (statik) / keseimbangan ?

Apa pentingnya mekanika (statik) / keseimbangan ?

Apa perbedaan partikel dan benda tegar? • Particle: A very small amount of matter

Apa perbedaan partikel dan benda tegar? • Particle: A very small amount of matter which may be assumed to occupy a single point in space. • Rigid body: A combination of a large number of particles occupying fixed position with respect to each other.

Apa perbedaan Partikel dan Benda Tegar ? Partikel: Mempunyai suatu massa namun ukurannya dapat

Apa perbedaan Partikel dan Benda Tegar ? Partikel: Mempunyai suatu massa namun ukurannya dapat diabaikan, sehingga geometri benda tidak akan terlibat dalam analisis masalah Benda Tegar: Kombinasi sejumlah partikel yang mana semua partikel berada pada suatu jarak tetap terhadap satu dengan yang lain

Contoh Partikel

Contoh Partikel

Contoh Benda Tegar

Contoh Benda Tegar

Review Sistem Satuan • Four fundamental physical quantities. Length, Time, Mass, Force. • We

Review Sistem Satuan • Four fundamental physical quantities. Length, Time, Mass, Force. • We will work with two unit systems in static’s: SI & US Customary. Bagaimana konversi dari SI ke US atau sebaliknya ?

Apa yang harus dilakukan supaya Mekanika Teknik menjadi mudah ? Banyak dan sering menyelesaikan

Apa yang harus dilakukan supaya Mekanika Teknik menjadi mudah ? Banyak dan sering menyelesaikan soal-soal Prosedur mengerjakan soal: 1. 2. 3. 4. Baca soal dengan cermat Buat free body diagram dan tabulasikan data soal Tuliskan prinsip dasar / persamaan yang relevan dengan soal Selesaikan persamaan sepraktis mungkin sehingga didapat hasil yang signifikan dan jangan lupa disertai sistem satuan 5. Pelajari jawaban dengan akal sehat, masuk akal atau tidak 6. Jika ada waktu, coba pikirkan cara lain untuk menyelesaikan soal tersebut.

THE WHAT, WHY AND HOW OF A FREE BODY DIAGRAM (FBD) Free Body Diagrams

THE WHAT, WHY AND HOW OF A FREE BODY DIAGRAM (FBD) Free Body Diagrams are one of the most important things for you to know how to draw and use. What ? - It is a drawing that shows all external forces acting on the particle. Why ? - It helps you write the equations of equilibrium used to solve for the unknowns (usually forces or angles).

How ? 1. Imagine the particle to be isolated or cut free from its

How ? 1. Imagine the particle to be isolated or cut free from its surroundings. 2. Show all the forces that act on the particle. Active forces: They want to move the particle. Reactive forces: They tend to resist the motion. 3. Identify each force and show all known magnitudes and directions. Show all unknown magnitudes and / or directions as variables. A Note : Engine mass = 250 Kg FBD at A

Fundamental Principles • The parallelogram law for the addition of forces: Two forces acting

Fundamental Principles • The parallelogram law for the addition of forces: Two forces acting on a particle can be replaced by a single force, called resultant, obtained by drawing the diagonal of the parallelogram which has sides equal to the given forces f 1+f 2 f 1 • Parallelogram Law

Fundamental Principles (cont’) • The principle of transmissibility: A force acting at a point

Fundamental Principles (cont’) • The principle of transmissibility: A force acting at a point of a rigid body can be replaced by a force of the same magnitude and same direction, but acting on at a different point on the line of action f 2 f 1 and f 2 are equivalent if their magnitudes are the same and the object is rigid. • Principle of Transmissibility

APPLICATION OF VECTOR ADDITION There are four concurrent cable forces acting on the bracket.

APPLICATION OF VECTOR ADDITION There are four concurrent cable forces acting on the bracket. How do you determine the resultant force acting on the bracket ?

Addition of Vectors • Trapezoid rule for vector addition • Triangle rule for vector

Addition of Vectors • Trapezoid rule for vector addition • Triangle rule for vector addition • Law of cosines, C B C • Law of sines, B • Vector addition is commutative, • Vector subtraction

Sample Problem SOLUTION: • Trigonometric solution - use the triangle rule for vector addition

Sample Problem SOLUTION: • Trigonometric solution - use the triangle rule for vector addition in conjunction with the law of cosines and law of sines to find the resultant. The two forces act on a bolt at A. Determine their resultant.

Sample Problem (cont’) • Trigonometric solution - Apply the triangle rule. From the Law

Sample Problem (cont’) • Trigonometric solution - Apply the triangle rule. From the Law of Cosines, From the Law of Sines,

ADDITION OF SEVERAL VECTORS • Step 1 is to resolve each force into its

ADDITION OF SEVERAL VECTORS • Step 1 is to resolve each force into its components • Step 2 is to add all the x components together and add all the y components together. These two totals become the resultant vector. • Step 3 is to find the magnitude and angle of the resultant vector.

Example of this process,

Example of this process,

You can also represent a 2 -D vector with a magnitude and angle.

You can also represent a 2 -D vector with a magnitude and angle.

EXAMPLE Given: Three concurrent forces acting on a bracket. Find: The magnitude and angle

EXAMPLE Given: Three concurrent forces acting on a bracket. Find: The magnitude and angle of the resultant force. Plan: a) Resolve the forces in their x-y components. b) Add the respective components to get the resultant vector. c) Find magnitude and angle from the resultant components.

EXAMPLE (continued) F 1 = { 15 sin 40° i + 15 cos 40°

EXAMPLE (continued) F 1 = { 15 sin 40° i + 15 cos 40° j } k. N = { 9. 642 i + 11. 49 j } k. N F 2 = { -(12/13)26 i + (5/13)26 j } k. N = { -24 i + 10 j } k. N F 3 = { 36 cos 30° i – 36 sin 30° j } k. N = { 31. 18 i – 18 j } k. N

EXAMPLE (continued) Summing up all the i and j components respectively, we get, FR

EXAMPLE (continued) Summing up all the i and j components respectively, we get, FR = { (9. 642 – 24 + 31. 18) i + (11. 49 + 10 – 18) j } k. N = { 16. 82 i + 3. 49 j } k. N y FR FR = ((16. 82)2 + (3. 49)2)1/2 = 17. 2 k. N = tan-1(3. 49/16. 82) = 11. 7° x

Sample Problem SOLUTION: • Resolve each force into rectangular components. • Determine the components

Sample Problem SOLUTION: • Resolve each force into rectangular components. • Determine the components of the resultant by adding the corresponding force components. Four forces act on bolt A as shown. Determine the resultant of the force on the bolt. • Calculate the magnitude and direction of the resultant.

Sample Problem (cont’) SOLUTION: • Resolve each force into rectangular components. force mag x

Sample Problem (cont’) SOLUTION: • Resolve each force into rectangular components. force mag x - comp y - comp r + 129. 9 + 75. 0 F 1 150 r - 27. 4 + 75. 2 F 2 80 r - 110. 0 F 3 110 0 r + 96. 6 - 25. 9 F 4 100 • Determine the components of the resultant by adding the corresponding force components. • Calculate the magnitude and direction.

READING QUIZ 1. The subject of mechanics deals with what happens to a body

READING QUIZ 1. The subject of mechanics deals with what happens to a body when ______ is / are applied to it. A) magnetic field B) heat D) neutrons E) lasers C) forces 2. ________ still remains the basis of most of today’s engineering sciences. A) Newtonian Mechanics B) Relativistic Mechanics C) Euclidean Mechanics C) Greek Mechanics

READING QUIZ 3. Which one of the following is a scalar quantity? A) Force

READING QUIZ 3. Which one of the following is a scalar quantity? A) Force B) Position C) Mass D) Velocity 4. For vector addition you have to use ______ law. A) Newton’s Second B) the arithmetic C) Pascal’s D) the parallelogram

CONCEPT QUIZ 5. Can you resolve a 2 -D vector along two directions, which

CONCEPT QUIZ 5. Can you resolve a 2 -D vector along two directions, which are not at 90° to each other? A) Yes, but not uniquely. B) No. C) Yes, uniquely. 6. Can you resolve a 2 -D vector along three directions (say at 0, 60, and 120°)? A) Yes, but not uniquely. B) No. C) Yes, uniquely.

ATTENTION QUIZ 7. Resolve F along x and y axes and write it in

ATTENTION QUIZ 7. Resolve F along x and y axes and write it in vector form. F = { ______ } N y A) 80 cos (30°) i - 80 sin (30°) j x B) 80 sin (30°) i + 80 cos (30°) j C) 80 sin (30°) i - 80 cos (30°) j 30° F = 80 N D) 80 cos (30°) i + 80 sin (30°) j 8. Determine the magnitude of the resultant (F 1 + F 2) force in N when F 1 = { 10 i + 20 j } N and F 2 = { 20 i + 20 j } N. A) 30 N B) 40 N D) 60 N E) 70 N C) 50 N