Computing degree of determinant via discrete convex optimization

  • Slides: 34
Download presentation
Computing degree of determinant via discrete convex optimization over Euclidean building Hiroshi Hirai University

Computing degree of determinant via discrete convex optimization over Euclidean building Hiroshi Hirai University of Tokyo hirai@mist. i. u-tokyo. ac. jp Workshop: Recent Development in Optimization 2 GRIPS, Roppongi, Tokyo, 2018/10/13 1

Contents non-commutative combinatorial optimization v. s. linear algebra Submodularity + Discrete convexity 1. Background:

Contents non-commutative combinatorial optimization v. s. linear algebra Submodularity + Discrete convexity 1. Background: Edmonds problem and recent development 2. Motivation + contribution of this work 2

Edmonds Problem Edmonds 1967 3

Edmonds Problem Edmonds 1967 3

Motivation Algebraic Interpretation of Bipartite Matching 1 1 2 2 3 3 4 4

Motivation Algebraic Interpretation of Bipartite Matching 1 1 2 2 3 3 4 4 1 2 3 4 • min-max formula ( König-Egerváry ) • polynomial time algorithm 4

Linear matroid intersection Linear matroid matching ----- Edmonds 1970, Lovász 1981 • Randomized polynomial

Linear matroid intersection Linear matroid matching ----- Edmonds 1970, Lovász 1981 • Randomized polynomial time algorithm (Lovász 1979) • Connection to circuit complexity (Kabanets-Impagliazzo 2004) 5

Non-commutative Edmonds Problem nc- Ivanyos-Qiao-Subrahmanyam 2015 nc-rank Amitsur 1966 6

Non-commutative Edmonds Problem nc- Ivanyos-Qiao-Subrahmanyam 2015 nc-rank Amitsur 1966 6

7

7

nc-rank in P !! • Min-max theorem: Fortin-Reutenauer 2004 rank = nc-rank bipartite matching

nc-rank in P !! • Min-max theorem: Fortin-Reutenauer 2004 rank = nc-rank bipartite matching linear matroid intersection s. t. min-max theorem rank < nc-rank non-bipartite matching linear matroid matching 8

König-Egerváry from Fortin-Reutenauer s. t. permutation matrices 9

König-Egerváry from Fortin-Reutenauer s. t. permutation matrices 9

Algorithms for nc-rank • Garg-Gurvits-Oliveira-Wigderson 2015 (FOCS’ 16): Gurvits’ operator scaling • Ivanyos-Qiao-Subrahmanyam 2015

Algorithms for nc-rank • Garg-Gurvits-Oliveira-Wigderson 2015 (FOCS’ 16): Gurvits’ operator scaling • Ivanyos-Qiao-Subrahmanyam 2015 (ITCS’ 17): Wong sequence --- vector-space analogue of augmenting path • Hamada-Hirai 2017: Submodularity + convex optimization on CAT(0)-space They are beyond Euclidean convex optimization 10

Submodularity View Hamada-Hirai 2017 s. t. Submodular optimization on the modular lattice of vector

Submodularity View Hamada-Hirai 2017 s. t. Submodular optimization on the modular lattice of vector subspaces 11

Motivation of this work Ex: Weighted bipartite matching 1 1 2 2 3 3

Motivation of this work Ex: Weighted bipartite matching 1 1 2 2 3 3 4 4 12

Algebraic Interpretation of Weighted Matching 1 1 1 2 3 4 1 2 2

Algebraic Interpretation of Weighted Matching 1 1 1 2 3 4 1 2 2 3 3 4 4 2 3 4 13

Weighted Edmonds Problem Goal: develop a non-commutative version 14

Weighted Edmonds Problem Goal: develop a non-commutative version 14

Contribution 15

Contribution 15

16

16

How to define “determinant” of matrices over skew field Bruhat decomposition: LU-decomposition of matrices

How to define “determinant” of matrices over skew field Bruhat decomposition: LU-decomposition of matrices over skew field uni-lower-triangular uni-upper-triangular diagonal permutation unique commutator group 17

Weighted Non-commutative Edmonds Problem 18

Weighted Non-commutative Edmonds Problem 18

Min-Max Theorem 19

Min-Max Theorem 19

Weak Duality 20

Weak Duality 20

Strong Duality + Algorithm (SDA) 21

Strong Duality + Algorithm (SDA) 21

22

22

Remarks short-step We can improve this bound to 23

Remarks short-step We can improve this bound to 23

Thm [Ivanyos et al 2010] Thm [H. 18] weighted ver. mixed polynomial matrix 24

Thm [Ivanyos et al 2010] Thm [H. 18] weighted ver. mixed polynomial matrix 24

Interpretation via Euclidean building ? Lawler 1975 dual of bipartite matching Iwata-Takamatsu 2013 Iwata-Oki-Takamatsu

Interpretation via Euclidean building ? Lawler 1975 dual of bipartite matching Iwata-Takamatsu 2013 Iwata-Oki-Takamatsu 2017 25

Dual of nc-rank Dual of deg Det s. t. vector subspaces Submodular optimization on

Dual of nc-rank Dual of deg Det s. t. vector subspaces Submodular optimization on the modular lattice of vector subspaces 26

27

27

28

28

Uniform modular lattice [H. 17] 29

Uniform modular lattice [H. 17] 29

L-convexity on uniform modular lattice Several DCA concepts/properties are naturally extended 30

L-convexity on uniform modular lattice Several DCA concepts/properties are naturally extended 30

is viewed as L-convex function minimization on uniform modular lattice • SDA = steepest

is viewed as L-convex function minimization on uniform modular lattice • SDA = steepest descent algorithm for this L-convex function: submodular optimization adapting Murota-Shioura 2014 31

Summary • Edmonds problem, rank v. s. nc-rank • Weighted Edmonds problem, deg det

Summary • Edmonds problem, rank v. s. nc-rank • Weighted Edmonds problem, deg det v. s. deg Det formulation, algorithm, special case of deg det = deg Det • Submodularity / discrete convexity aspect L-convexity on uniform modular lattice (= Euclidean building) 32

Problems • Representable by deg det but deg det < deg Det : Non-bipartite

Problems • Representable by deg det but deg det < deg Det : Non-bipartite matching: Edmonds 1965 Matching forest: Giles 1982 Path matching: Cunningham-Geelen 1997 Linear matroid matching: Lovász 1980, Iwata-Kobayashi 2017 Can we develop a unified theory ? 33

References H. Hirai: Uniform modular lattice and Euclidean building, 2017 H. Hirai: Uniform semimodular

References H. Hirai: Uniform modular lattice and Euclidean building, 2017 H. Hirai: Uniform semimodular lattice and valuated matroid, 2018 H. Hirai: Computing degree of determinant via discrete convex optimization over Euclidean building, 2018. Thank you for your attention 34