UNIVERSIT DEGLI STUDI DI SALERNO FACOLT DI INGEGNERIA

  • Slides: 19
Download presentation
UNIVERSITÀ DEGLI STUDI DI SALERNO FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER

UNIVERSITÀ DEGLI STUDI DI SALERNO FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L’AMBIENTE E IL TERRITORIO CORSO DI FRANE ANNO ACCADEMICO 2013/2014 Prof. Ing. Michele Calvello ESERCITAZIONE N° 4 Monitoraggio della grande frana lenta di Kahrod nella catena montuosa Alborz (Iran) condotto mediante GPS ed interferometria SAR Allievo: Lucia D’Elia Matricola: 0622500143

INTRODUZIONE Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

INTRODUZIONE Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati Conclusioni Bibliografia Le frane sono il processo di erosione dominante nelle catene montuose attive e le responsabili dell’evoluzione geomorfologica dei paesaggi. Inoltre sono i principali eventi distruttivi che colpiscono ogni anno, insediamenti urbani ed infrastrutture causando gravi danni, perdite per la vita e le proprietà. Generalmente i fattori innescanti dei fenomeni franosi sono eventi naturali come piogge o terremoti o perturbazioni artificiali.

Introduzione ILLUSTRAZIONE DEL CASO DI STUDIO Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione ILLUSTRAZIONE DEL CASO DI STUDIO Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati Conclusioni Bibliografia La frana di Kahrod si trova vicino all’omonimo villaggio, lungo il fiume Haraz, al centro della catena montuosa di Alborz, nel nord dell’Iran. Questa catena montuosa è nota per la sua tettonica attiva: diversi terremoti sono avvenuti nel passato e se ne prevedono altri. Il caso è complesso perché si tratta di un fenomeno di riattivazione di una frana precedente, probabilmente innescata da un terremoto. Nel 1957 il terremoto di Sangechal ha probabilmente indotto una significativa riattivazione del fenomeno.

Introduzione ILLUSTRAZIONE DEL CASO DI STUDIO Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione ILLUSTRAZIONE DEL CASO DI STUDIO Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati Conclusioni Bibliografia NEL PRESENTE La massa scorrevole, di circa 0, 7 km 2, è in continuo movimento ed è composta da blocchi di roccia e arenaria brecciata. Si estende da quota 1200 m fino ai 1600 m. La geometria delle scarpate permette di dire che in alcuni punti la superficie di taglio raggiunge i 70 m. Si stima il volume del materiale destabilizzato inizialmente a 80× 106 m 3, mentre ad oggi è circa pari a 15× 106 m 3.

Introduzione ILLUSTRAZIONE DEL CASO DI STUDIO Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione ILLUSTRAZIONE DEL CASO DI STUDIO Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati Conclusioni Bibliografia La punta meridionale è separata dal resto della frana da due zone di frattura. La zona B è una grande nicchia di distacco tagliata dal fiume Kahrod. A nord del fiume, il fenomeno è rallentato da una collinetta in roccia. Il tasso di deformazione qui è notevolmente inferiore!

Introduzione Illustrazione del caso di studio MONITORAGGIO GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione Illustrazione del caso di studio MONITORAGGIO GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati Conclusioni Bibliografia Nel giugno 2003 è stata installata una rete GPS semi-permanente costituita da 8 benchmarks. Ci sono state misurazioni nel giugno 2003, giugno 2004, agosto 2005 e novembre 2006.

Introduzione Illustrazione del caso di studio MONITORAGGIO GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione Illustrazione del caso di studio MONITORAGGIO GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati Conclusioni Bibliografia La rete GPS è stata poi infittita per applicare il metodo rapido-statico. Sono stati effettuati 57 fori poi misurati nel novembre 2006 e maggio 2007.

Introduzione Illustrazione del caso di studio Monitoraggio GPS ANALISI INSAR Evoluzione temporale Analisi dei

Introduzione Illustrazione del caso di studio Monitoraggio GPS ANALISI INSAR Evoluzione temporale Analisi dei risultati Conclusioni Bibliografia È stata usata anche l’analisi interferometrica DIn. Sar per mappare i limiti della frana con precisione e per definire ulteriormente il campo di deformazione associato. Sono state acquisite 15 immagini dal 9 Ottobre 2005 al 18 marzo 2007, con un’immagine ogni 35 giorni. La coerenza a 35 giorni è molto buona perché la frana di Kahrod è quasi totalmente priva di vegetazione.

Introduzione Illustrazione del caso di studio Monitoraggio GPS ANALISI INSAR Evoluzione temporale Analisi dei

Introduzione Illustrazione del caso di studio Monitoraggio GPS ANALISI INSAR Evoluzione temporale Analisi dei risultati Conclusioni Bibliografia L’informazione principale è che la deformazione si mantiene costante nel periodo di analisi. Il movimento stimato è di circa 30 cm/anno tranne che nella nicchia di distacco dove arriva a 45 cm/anno e nella punta nord dove la deformazione diminuisce fino a 20 cm/anno.

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR EVOLUZIONE TEMPORALE Analisi

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR EVOLUZIONE TEMPORALE Analisi dei risultati Conclusioni Bibliografia Per analizzare meglio l’attività della frana, è stata istituita una stazione GPS La serie temporale di 1 anno suggerisce che nessuna forzante esterna (terremoti permanente nel centro della parte inferiore della frana. o precipitazioni) hanno indotto una modifica sull’attività della frana. È stato installato un pluviometro per rilevare qualsiasi influenza delle precipitazioni.

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale ANALISI

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale ANALISI DEI RISULTATI Conclusioni Bibliografia La zona che si sta deformando mappata con In. SAR è totalmente in accordo con le scarpate rilevate sul campo e con le osservazioni di 3 punti appartenenti alla rete GPS rapido-statica. Una zona di frattura divide la punta meridionale dal resto del corpo della frana. Le misure In. SAR e GPS rivelano che la zona a Sud non si deforma affatto. Ciò può ridurre il rischio per il villaggio.

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale ANALISI

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale ANALISI DEI RISULTATI Conclusioni Bibliografia Tutte le tecniche portano a dire che la deformazione superficiale è approssimativamente omogenea su tutta la frana. I tassi di deformazione più alti si trovano nel capo della frana e la scarpata inferiore incisa dal fiume Kahrod. Le indagini GPS rapido-statiche indicano tracce di spostamenti elevati perpendicolari alla linea di contatto tra la frana ed il poggio che ne blocca l’espansione. Per questo motivo la massa ruota, e la frana si sviluppa verso Nord. Proprio a Nord ci sono delle fessure che forse si sono create quando il materiale destabilizzato non era stato ancora scaricato dal fiume. Ad oggi la deformazione può essere attribuita all’erosione, all’incisione del fiume o allo sforzo indotto dalla frana. Per capire meglio, si devono condure altre indagini!

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale ANALISI

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale ANALISI DEI RISULTATI Conclusioni Bibliografia Bisogna capire se lo sperone di roccia può resistere nel tempo, e se un forte terremoto o abbondanti precipitazioni potrebbero accelerare il movimento franoso. Sia le misure GPS che quelle In. SAR non presentano, nei rispettivi periodi di osservazione, variazioni significative nei tassi di spostamento. Le osservazioni GPS sono state confrontate con quelle pluviometriche: nessuna forzante esterna ha indotto variazioni importanti anche se dopo abbondanti precipitazioni si sono registrate piccole discontinuità. Questa correlazione deve essere confermata!

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati CONCLUSIONI Bibliografia Kahrod si trova in una regione tettonica molto attiva. La frana è stata innescata probabilmente da un sisma e riattivata nel 1957 dal terremoto Sangechal. Durante il periodo di osservazione, non c’è stato nessun terremoto di magnitudo elevata e quindi non si possono dimostrare correlazioni tra sismicità e attività della frana. Il processo attivo principale è la rimozione della massa rocciosa operata dall’azione di inaridimento del fiume Kahrod. Questo ridurrebbe il rischio di un’evoluzione catastrofica della frana!

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati CONCLUSIONI Bibliografia Gli obiettivi del lavoro svolto dagli autori erano: • determinare i limiti spaziali della frana di Kahrod • quantificare la distribuzione spaziale della deformazione superficiale tramite tecniche GPS e DIn. SAR • analizzare l’evoluzione degli spostamenti; • ottenere una comprensione migliore delle principali cause del movimento.

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati CONCLUSIONI Bibliografia L’articolo lascia dei punti da approfondire. Si deve confermare ed approfondire il legame tra precipitazioni e accelerazione della massa in movimento attraverso un periodo di acquisizione di dati pluviometrici più lungo. Si deve capire se la punta meridionale è effettivamente separata, sia fisicamente (fratture) che nel comportamento, dal resto del materiale. Per questo si possono prevedere indagini geologiche e geotecniche con osservazioni sul campo per misurare gli spostamenti. Solo nel caso in cui questa parte sia in movimento si deve prevedere un sistema di allerta ed allarme per gli abitanti del villaggio.

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati Conclusioni BIBLIOGRAFIA Allen, M. B. , Ghassemi, M. R. , Shahrabi, M. , Qorashi, M. , 2003. Accommodation of the late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology 25, 659– 672. Ambraseys, N. N. , Melville, C. P. , 1982. A History of Persian Earthquakes. Cambridge University Press. Angeli, M. G. , Pasuto, A. , Silvano, S. , 2000. A critical review of landslide monitoring experiences. Engineering Geology 55, 133– 147. Arturi, A. , Del Frate, F. , Lategano, E. , Schiavon, G. , Stramondo, S. , 2003. The 1998 Sarno (Italy) Landslide from SAR Interferometry, Proc. of FRINGE'2003. Berardino, P. , Costantini, M. , Franceschetti, G. , Iodice, A. , Pietranera, L. , Rizzo, V. , 2003. Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology 68 (1– 2), 31– 51. Berberian, M. , Yeats, R. S. , 1999. Patterns of historical earthquake rupture in the Iranian plateau. Bulletin of the Seismological Society of America 89, 120– 139. Burbank, D. W. , Leland, J. , Fielding, E. , Anderson, R. , Brozovic, N. , Reid, M. , Duncan, C. , 1996. Bedrock incision, rock uplift and threshold hill slopes in the northwestern Himalayas. Nature 379, 505– 510. Bürgmann, R. , Rosen, P. A. , Fielding, E. J. , 2000. Synthetic Aperture Radar Interferometry to measure Earth's surface topography and its deformation. Annual Review of Earth and Planetary Sciences 28, 169 -209. Centre National d'Etudes Spatiales (CNES), 1997, PRISME/DIAPASON software, version 1. 0, Toulouse, France. Chen, C. W. , Zebker, H. A. , 2002. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing 40, 1709– 1719. Coe, J. A. , Ellis, W. L. , Godt, J. W. , Savage, W. Z. , Savage, J. E. , Michael, J. A. , Kibler, J. D. , Powers, P. S. , Lidke, D. J. , Debray, S. , 2003. Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998–March 2002. Engineering Geology 68, 67– 101. Colesanti, C. , Wasowski, J. , 2006. Investigating landslides with space-borne Synthetic. Aperture Radar (SAR) interferometry. Engineering geology 88, 173– 199. Djamour, Y. , 2004. Contribution de la géodésie (GPS et nivellement) à l'étude de la déformation tectonique et de l'aléa sismique sur la région de Téhéran (montagne de l'Alborz, Iran), Ph. D. thesis, Université Montpellier II, Montpellier, France. Farina, P. , Colombo, D. , Furnagalli, A. , Marks, F. , Moretti, S. , 2006. Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Engineering Geology 88, 173– 199. Ferretti, A. , Prati, C. , Rocca, F. , 1999. Monitoring Terrain Deformation using Multitemporal SAR Images, Proc. of FRINGE'1999. Ferretti, A. , Prati, C. , Rocca, F. , 2000. Analysis of Permanent Scatterers in SAR Interferometry, Proc. of IGARSS'2000. Fruneau, B. , Achache, J. , Delacourt, C. , 1996. Observation and modeling of the Saint-Etienne-de-Tinee landslide using SAR interferometry. Tectonophysics 265, 181– 190. Fürsich, F. T. , Wilmsen, M. , Seyed-Emami, K. , 2006. Ichnology of lower Jurassic beach deposits in the Shemshak Formation at Shahmirzad, southeastern Alborz Mountains, Iran. Int. J. of Paleont. Sedim. and Geol. , Facies 52 (4), 599– 610. doi: 10. 1007/s 10347 -006 -0082 -0. Gabriel, A. K. , Goldstein, R. M. , Zebker, H. A. , 1989. Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research 94, 9183– 9191. Gili, J. A. , Corominas, J. , Rius, J. , 2000. Using Global Positioning System techniques in landslide monitoring. Engineering Geology 55, 167– 192. Herring, T. A. , 2002. GLOBK: Global Kalman Filter VLBI and GPS analysis program, v. 10. 0. , Mass. Inst. of Technol. , Cambridge. Hovius, N. , Stark, C. P. , Allen, P. A. , 1997. Sediment flux from a mountain belt derived by landslide mapping. Geology 25, 231– 234. Hovius, N. , Stark, C. P. , Chu, H. T. , Lin, J. C. , 2000. Supply and removal of sediment in a landslide-dominated mountain belt: Central range, Taiwan. Journal of Geology 108, 73– 89. Iverson, R. M. , Major, J. J. , 1987. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California — physical interpretation of empirical relations. Geological Society of America Bulletin 99, 579– 594.

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi

Introduzione Illustrazione del caso di studio Monitoraggio GPS Analisi In. SAR Evoluzione temporale Analisi dei risultati Conclusioni BIBLIOGRAFIA Jackson, J. , Priestley, K. , Allen, M. , Berberian, M. , 2002. Active tectonics of South Caspian Basin. Geophysical Journal International 148, 214– 245. Kimura, H. , Yamaguchi, Y. , 2000. Detection of landslide areas using satellite radar interferometry. Photogrammetric Engineering and Remote Sensing 66 (3), 337– 344. King, R. W. , & Bock, Y. , 2002, Documentation of the GAMIT GPS analysis software release 10. 0, Mass. Inst. of Technol. , Cambridge. Korup, O. , 2005. Large landslides and their effect on sediment flux in South Westland, New Zealand. Earth Surface Processes and Landforms 30, 305– 323. Malet, J. P. , Maquaire, O. , Calais, E. , 2002. The use of Global Positioning System techniques for the continuous monitoring of landslides — application to the Super-Sauze earth flow (Alpes de Haute-Provence, France). Geomorphology 43, 33– 54. Mahdavifar, M. R. , Solaymani, S. , Jafari, M. K. , 2006. Landslides triggered by the Avaj, Iran, earthquake of June 22, 2002. Engineering Geology 96 (2– 3), 166– 182. Mantovani, F. , Soeters, R. , Van Westen, C. J. , 1996. Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15, 213– 225. Massonnet, D. , Feigl, K. , 1998. Radar interferometry and its application to changes in the earth's surface. Reviews of Geophysics 36 (4), 441– 500. Mc. Kenzie, D. , 1972. Active tectonics of the Mediterranean region. Geophysical Journal International 30 (2), 109– 185. Mora, P. , Baldi, P. , Casula, G. , Fabris, M. , Ghiotti, M. , Mazzini, E. , Pesci, A. , 2003. Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca' di Malta landslide (Northern Apennines, Italy). Engineering Geology 68, 103– 121. Pesci, A. , Baldi, P. , Bedin, A. , Casula, G. , Cenni, N. , Fabris, M. , Loddo, F. , Mora, P. , Bacchetti, M. , 2004. Digital elevation models for landslide evolution monitoring: application on two areas located in the Reno River Valley (Italy). Annals of Geophysics 47 (4), 1339– 1353. Ritz, J. -F. , Nazari, H. , Ghassemi, A. , Salamati, R. , Shafei, A. , Solaymani, S. , Vernant, P. , 2006. Active transtension inside Central Alborz: a new insight of the Northern Iran– Southen Caspian Geodynamics. Geology 34, 477– 480. doi: 10. 1130/G 22319. 1. Rott, H. , Grasemann, B. , Scheuchl, B. , Siegel, A. , 1999. Monitoring very slow movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophysical Research Letters, 26 11, 1629– 1632. Shahrivar, H. , Nadim, H. , Elverhoi, A. , 2006. Comparison of Two Earthquake Induced Landslides in Northern Iran, Proc. of EGU'2006. Squarzoni, C. , Delacourt, C. , Allemand, P. , 2003. Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Engineering Geology 68, 53– 66. Tatar, M. , Jackson, J. , Hatzfeld, D. , Bergman, E. , 2007. The 2004 May 28 Baladeh earthquake (Mw 6. 2) in the Alborz, Iran: overthrusting the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geophysical Journal International 170 (1), 249– 261. doi: 10. 1111/j. 1365 -246 X. 2007. 03386. x. Tchalenko, J. S. , Ambraseys, N. N. , Berberian, M. , Iranmanesh, M. H. , Mahajer-Ashjai, A. , Bailly, M. , Arsovsky, M. , 2007. Materials for the study of Seismotectonics of Iran, Geological Survey of Iran. Vernant, P. , Nilforoushan, F. , Chery, J. , Bayer, R. , Djamour, Y. , Masson, F. , Nankali, H. , Ritz, J. -F. , Sedighi, M. , Tavakoli, F. , 2004. Deciphering oblique shortening of Central Alborz in Iran using geodetic data. Earth Planetary Science and Letters 223, 177– 185. Vietmeier, J. , Wagner, W. , Dikau, R. , 1999. Monitoring Moderate Slope Movements (landslides) in the Southern French Alps using Differential SAR Interferometry, Proc. of FRINGE'99. Zebker, H. A. , Villasenor, J. , 1992. Decorrelation in interferometric radar surface echoes. IEEE Transactions on Geoscience and Remote Sensing 30 (5), 950– 959. Zebker, H. A. , Rosen, P. A. , Hensley, S. , 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophyssical Research 102, 7547– 7563.

Grazie per l’attenzione!

Grazie per l’attenzione!