THIS SLIDE IS ANIMATED IN FILLING ORDER 2

  • Slides: 52
Download presentation
THIS SLIDE IS ANIMATED IN FILLING ORDER 2. PPT H = 1 s 1

THIS SLIDE IS ANIMATED IN FILLING ORDER 2. PPT H = 1 s 1 1 s He = 1 s 2 1 s Li = 1 s 2 2 s 1 1 s 2 s 2 px 2 py 2 pz Be = 1 s 2 2 s 2 C = 1 s 2 2 p 2 S = 1 s 2 2 p 4 3 s 3 px 3 py 3 pz

H = 1 s 1 1 s e+1 He = 1 s 2 1

H = 1 s 1 1 s e+1 He = 1 s 2 1 s ee- +2 Coulombic attraction holds valence electrons to atom. Be = 1 s 2 2 s 2 1 s 2 s eee- Coulombic attraction holds valence electrons to atom. +4 e- Valence electrons are shielded by the kernel electrons. Therefore the valence electrons are not held as tightly in Be than in He.

26 electrons. Iron has ___ Fe = 1 s 1 2 s 22 p

26 electrons. Iron has ___ Fe = 1 s 1 2 s 22 p 63 s 23 p 64 s 23 d 6 1 s 2 px 2 py 2 pz 2 s 3 s 3 px 3 py 3 pz 6 s 6 p 4 s 5 d 3 d 3 d 3 d 4 f 32 5 s e- eee- e- e- +26 e- e- ee- e- e- 4 s 4 p 3 d e- ee- e- e- 4 d 18 e- e- 5 p 18 Arbitrary Energy Scale 3 s 3 p 8 ee- 2 s 2 p 8 1 s 2 NUCLEUS 3 d 3 d

Electron Configurations Orbital Filling Element 1 s 2 s 2 px 2 py 2

Electron Configurations Orbital Filling Element 1 s 2 s 2 px 2 py 2 pz 3 s Electron Configuration H 1 s 1 He 1 s 2 C NOT CORRECT 1 s 22 s 1 Violates Hund’s Rule 1 s 22 p 2 N 1 s 22 p 3 O 1 s 22 p 4 F 1 s 22 p 5 Ne 1 s 22 p 6 Na 1 s 22 p 63 s 1 Li

Electron Configurations Orbital Filling Element 1 s 2 s 2 px 2 py 2

Electron Configurations Orbital Filling Element 1 s 2 s 2 px 2 py 2 pz 3 s Electron Configuration H 1 s 1 He 1 s 2 Li 1 s 22 s 1 C 1 s 22 p 2 N 1 s 22 p 3 O 1 s 22 p 4 F 1 s 22 p 5 Ne 1 s 22 p 6 Na 1 s 22 p 63 s 1

Filling Rules for Electron Orbitals Aufbau Principle: Electrons are added one at a time

Filling Rules for Electron Orbitals Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom have been accounted for. Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. To occupy the same orbital, two electrons must spin in opposite directions. Hund’s Rule: Electrons occupy equal-energy orbitals so that a maximum number of unpaired electrons results. *Aufbau is German for “building up”

Filling Rules for Electron Orbitals Aufbau Principle: Electrons are added one at a time

Filling Rules for Electron Orbitals Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom 6 s 6 p 5 d 4 f have been accounted for. 32 5 s 5 p 4 d Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. 4 s 4 p 3 d 18 To occupy the same orbital, two electrons must spin in opposite 18 directions. Arbitrary North South 3 s Energy Scale - 3 p - 8 2 s 2 p Hund’s Rule: Electrons occupy equal-energy orbitals so that a maximum number of unpaired electrons results. 8 1 s *Aufbau is German for “building up” S N NUCLEUS 2

Spin Quantum Number, ms North Electron aligned with magnetic field, South N S Electron

Spin Quantum Number, ms North Electron aligned with magnetic field, South N S Electron aligned against magnetic field, ms =its -½ ms = +behaves ½ The electron as if it were spinning about an axis through center. This electron spin generates a magnetic field, the direction of which depends on the direction of the spin. Brown, Le. May, Bursten, Chemistry The Central Science, 2000, page 208

Energy Level Diagram of a Many-Electron Atom 6 s 6 p 5 d 4

Energy Level Diagram of a Many-Electron Atom 6 s 6 p 5 d 4 f 32 5 s 5 p 4 d 18 4 s 4 p 3 d 18 Arbitrary Energy Scale 3 s 3 p 8 2 s 2 p 8 1 s 2 NUCLEUS O’Connor, Davis, Mac. Nab, Mc. Clellan, CHEMISTRY Experiments and Principles 1982, page 177

Maximum Number of Electrons In Each Sublevel Number of Orbitals Maximum Number of Electrons

Maximum Number of Electrons In Each Sublevel Number of Orbitals Maximum Number of Electrons s 1 2 p 3 6 d 5 10 f 7 14 Le. May Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World , 1996, page 146

Quantum Numbers n shell 1, 2, 3, 4, . . . l subshell 0,

Quantum Numbers n shell 1, 2, 3, 4, . . . l subshell 0, 1, 2, . . . n - 1 ml orbital - l. . . 0. . . +l ms electron spin +1/2 and - 1/2

Order in which subshells are filled with electrons 1 s 2 s 2 p

Order in which subshells are filled with electrons 1 s 2 s 2 p 3 s 3 p 3 d 4 s 4 p 4 d 4 f 5 s 5 p 5 d 5 f 6 s 6 p 6 d 7 s 2 2 6 2 10 1 s 2 s 2 p 3 s 3 p 4 s 3 d 4 p 5 s 4 d …

4 f Sublevels 4 d Energy 6 d 5 f 7 s 6 p

4 f Sublevels 4 d Energy 6 d 5 f 7 s 6 p 5 d 4 f 6 s 5 p 4 d 5 s 4 p 3 d 4 s 3 p 6 d 7 s 6 s 5 p 5 s 4 p 4 s 5 d 4 f n=3 3 d 2 p 3 s 2 p 2 s 4 p 3 d 4 s 3 p 3 s 4 d 3 p 3 s 2 p 2 s 6 p 5 f Energy n=4 n=2 2 s 1 s 1 s n=1 1 s

4 f Sublevels 4 d s p s d p s n=4 f d

4 f Sublevels 4 d s p s d p s n=4 f d p Energy s n=3 4 p 3 d 4 s 3 p 3 s 1 s 22 p 63 s 23 p 64 s 23 d 104 p 65 s 24 d 10… 2 p n=2 2 s n=1 1 s

Filling Rules for Electron Orbitals Aufbau Principle: Electrons are added one at a time

Filling Rules for Electron Orbitals Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom have been accounted for. Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. To occupy the same orbital, two electrons must spin in opposite directions. Hund’s Rule: Electrons occupy equal-energy orbitals so that a maximum number of unpaired electrons results. *Aufbau is German for “building up”

Energy Level Diagram of a Many-Electron Atom 6 s 6 p 5 d 4

Energy Level Diagram of a Many-Electron Atom 6 s 6 p 5 d 4 f 32 5 s 5 p 4 d 18 4 s 4 p 3 d 18 Arbitrary Energy Scale 3 s 3 p 8 2 s 2 p 8 1 s 2 NUCLEUS O’Connor, Davis, Mac. Nab, Mc. Clellan, CHEMISTRY Experiments and Principles 1982, page 177

Electron capacities Copyright © 2006 Pearson Benjamin Cummings. All rights reserved.

Electron capacities Copyright © 2006 Pearson Benjamin Cummings. All rights reserved.

2 Copyright © 2007 Pearson Benjamin Cummings. All rights reserved. 8 8 32 32

2 Copyright © 2007 Pearson Benjamin Cummings. All rights reserved. 8 8 32 32 18 18

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Hydrogen 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La H = 1 s 1

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Helium 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La He = 1 s 2

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Lithium 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La Li = 1 s 22 s 1

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Carbon 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La C = 1 s 22 p 2

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Nitrogen 4 f Bohr Model N 2 s 2 p Hund’s Rule “maximum number of unpaired orbitals”. 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La N = 1 s 22 p 3

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Fluorine 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La F = 1 s 22 p 5

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Aluminum 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La Al = 1 s 22 p 63 s 23 p 1

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Argon 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La Ar = 1 s 22 p 63 s 23 p 6

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Iron 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe = 1 s 22 p 63 s 23 p 64 s 23 d 6 Fe La

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s

Arbitrary Energy Scale Energy Level Diagram 6 s 6 p 5 d 5 s 5 p 4 d 4 s 4 p 3 d 3 s 3 p Lanthanum 4 f Bohr Model N 2 s 2 p 1 s Electron Configuration NUCLEUS H He Li C N Al Ar F CLICK ON ELEMENT TO FILL IN CHARTS Fe La La = 1 s 22 p 63 s 23 p 64 s 23 d 104 p 65 s 24 d 105 p 66 s 25 d 1

Shorthand Configuration A neon's electron configuration (1 s 22 p 6) B third energy

Shorthand Configuration A neon's electron configuration (1 s 22 p 6) B third energy level [Ne] 3 s 1 C D one electron in the s orbital shape Na = [1 s 22 p 6] 3 s 1 electron configuration

Shorthand Configuration Element symbol Electron configuration Ca [Ar] 4 s 2 V [Ar] 4

Shorthand Configuration Element symbol Electron configuration Ca [Ar] 4 s 2 V [Ar] 4 s 2 3 d 3 F [He] 2 s 2 2 p 5 Ag [Kr] 5 s 2 4 d 9 I [Kr] 5 s 2 4 d 10 5 p 5 Xe [Kr] 5 s 2 4 d 10 5 p 6 Fe Sg 22 p 64 s [He] 2 s[Ar] 3 s 223 d 3 p 664 s 23 d 6 [Rn] 7 s 2 5 f 14 6 d 4

General Rules • Pauli Exclusion Principle – Each orbital can hold TWO electrons with

General Rules • Pauli Exclusion Principle – Each orbital can hold TWO electrons with opposite spins. Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem Wolfgang Pauli

General Rules 6 d Aufbau Principle 7 s 6 p 5 d – Electrons

General Rules 6 d Aufbau Principle 7 s 6 p 5 d – Electrons fill the lowest energy orbitals first. 6 s 4 d 3 p 7 s 5 f 6 p 5 d 6 s 5 p 5 s 4 p 4 s 6 d 4 f 5 p Energy – “Lazy Tenant Rule” 5 f 4 d 5 s 3 d 4 p 3 d 4 s 3 p 3 s 3 s 2 p 2 p 2 s 2 s 1 s 1 s Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem 4 f

General Rules • Hund’s Rule – Within a sublevel, place one electron per orbital

General Rules • Hund’s Rule – Within a sublevel, place one electron per orbital before pairing them. – “Empty Bus Seat Rule” WRONG RIGHT Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

O Notation 15. 9994 • Orbital Diagram O 8 e- 1 s 2 s

O Notation 15. 9994 • Orbital Diagram O 8 e- 1 s 2 s • Electron Configuration 2 2 4 1 s 2 s 2 p Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem 8 2 p

Notation S 32. 066 • Longhand Configuration S 16 e 6 2 2 2

Notation S 32. 066 • Longhand Configuration S 16 e 6 2 2 2 1 s 2 s 2 p 3 s Core Electrons S 16 e 4 3 p Valence Electrons • Shorthand Configuration 2 4 [Ne] 3 s 3 p Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem 16

Periodic Patterns s 1 2 3 4 5 6 7 p 1 s 2

Periodic Patterns s 1 2 3 4 5 6 7 p 1 s 2 s f 2 p 3 s d (n-1) 4 s 3 d 4 p 5 s 4 d 5 p 6 s 5 d 6 p 7 s 6 d 7 p 6 (n-2) 7 3 p 4 f 5 f 1 s

Periodic Patterns • Period # – energy level (subtract for d & f) •

Periodic Patterns • Period # – energy level (subtract for d & f) • A/B Group # – total # of valence e- • Column within sublevel block – # of e- in sublevel Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

Periodic Patterns • Example - Hydrogen 1 1 s 1 st Period 1 st

Periodic Patterns • Example - Hydrogen 1 1 s 1 st Period 1 st column of s-block Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

Periodic Patterns • Shorthand Configuration – Core electrons: • Go up one row and

Periodic Patterns • Shorthand Configuration – Core electrons: • Go up one row and over to the Noble Gas. – Valence electrons: • On the next row, fill in the # of e- in each sublevel. Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

32 Periodic Patterns • Example - Germanium [Ar] 2 4 s 10 3 d

32 Periodic Patterns • Example - Germanium [Ar] 2 4 s 10 3 d Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem 2 4 p Ge 72. 61

Stability • Full energy level • Full sublevel (s, p, d, f) • Half-full

Stability • Full energy level • Full sublevel (s, p, d, f) • Half-full sublevel Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

The Octet Rule Atoms tend to gain, lose, or share electrons until they have

The Octet Rule Atoms tend to gain, lose, or share electrons until they have eight valence electrons. This fills the valence shell and tends to give the atom the stability of the inert gasses. 8 ONLY s- and p-orbitals are valence electrons.

Stability • Electron Configuration Exceptions – Copper EXPECT: [Ar] 4 s 2 3 d

Stability • Electron Configuration Exceptions – Copper EXPECT: [Ar] 4 s 2 3 d 9 ACTUALLY: [Ar] 4 s 1 3 d 10 – Copper gains stability with a full d-sublevel. Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

Stability • Electron Configuration Exceptions – Chromium EXPECT: [Ar] 4 s 2 3 d

Stability • Electron Configuration Exceptions – Chromium EXPECT: [Ar] 4 s 2 3 d 4 ACTUALLY: [Ar] 4 s 1 3 d 5 – Chromium gains stability with a half-full d -sublevel. Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

Electron Filling in Periodic Table s s p 1 2 d 3 4 K

Electron Filling in Periodic Table s s p 1 2 d 3 4 K 4 s 1 Ca 4 s 2 Sc 3 d 1 Ti 3 d 2 4 f Energy n=4 n=3 n=2 n=1 V 3 d 3 Cr 3 d 54 Mn 3 d 5 Fe 3 d 6 Co 3 d 7 Ni 3 d 8 Cu 9 3 d 3 d 10 Cr Cu 4 s 13 d 5 4 s 13 d 10 Zn 3 d 10 Ga 4 p 1 Ge 4 p 2 As 4 p 3 Se 4 p 4 Br 4 p 5 Kr 4 p 6 4 d 4 p 3 d 4 s 3 p 3 s Cr 4 s 13 d 5 4 s 3 d 2 p 2 s Cu 1 s 4 s 13 d 10 4 s 3 d

Stability • Ion Formation – Atoms gain or lose electrons to become more stable.

Stability • Ion Formation – Atoms gain or lose electrons to become more stable. – Isoelectronic with the Noble Gases. Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

Stability • Ion Electron Configuration – Write the e- configuration for the closest Noble

Stability • Ion Electron Configuration – Write the e- configuration for the closest Noble Gas • EX: Oxygen ion O 2 - Ne O 2 - 10 e- [He] 2 s 2 2 p 6 Courtesy Christy Johannesson www. nisd. net/communicationsarts/pages/chem

Orbital Diagrams for Nickel 2 1 s 2 s 2 6 2 p 2

Orbital Diagrams for Nickel 2 1 s 2 s 2 6 2 p 2 3 s 6 3 p 2 4 s 8 3 d Excited State 1 s 2 2 p 6 3 s 2 3 p 6 4 s 1 3 d 9 Pauli Exclusion 1 s 2 s 2 p 3 s 3 p 4 s 3 d Hund’s Rule 1 s 2 s 2 p 3 s 3 p 4 s 3 d 28 Ni 58. 6934

Orbital Diagrams for Nickel 2 1 s 2 s 2 6 2 p 2

Orbital Diagrams for Nickel 2 1 s 2 s 2 6 2 p 2 3 s 6 3 p 2 8 4 s 3 d Excited State 1 s 2 2 p 6 2 3 s 3 p 6 4 s 1 3 d 9 VIOLATES Pauli Exclusion 1 s 2 s 2 p 3 s 3 p 4 s 3 d VIOLATES Hund’s Rule 1 s 2 s 2 p 3 s 3 p 4 s 3 d 28 Ni 58. 6934

Write out the complete electron configuration for the following: 1) An atom of nitrogen

Write out the complete electron configuration for the following: 1) An atom of nitrogen 2) An atom of silver POP QUIZ 3) An atom of uranium (shorthand) Fill in the orbital boxes for an atom of nickel (Ni) 1 s 2 s 2 p 3 s 3 p 4 s 3 d Which rule states no two electrons can spin the same direction in a single orbital? Extra credit: Draw a Bohr model of a Ti 4+ cation. Ti 4+ is isoelectronic to Argon.

Answer Key Write out the complete electron configuration for the following: 1) An atom

Answer Key Write out the complete electron configuration for the following: 1) An atom of nitrogen 1 s 22 p 3 2) An atom of silver 1 s 22 p 63 s 23 p 64 s 23 d 104 p 65 s 24 d 9 3) An atom of uranium (shorthand) [Rn]7 s 26 d 15 f 3 Fill in the orbital boxes for an atom of nickel (Ni) 1 s 2 s 2 p 3 s 3 p 4 s 3 d Which rule states no two electrons can spin the same direction in a single orbital? Pauli exclusion principle Extra credit: Draw a Bohr model of a Ti 4+ cation. Ti 4+ is isoelectronic to Argon. n= 22+ n