Prospects to Use Silicon Photomultipliers for the Astroparticle

  • Slides: 16
Download presentation
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A.

Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München

Outline • • • A. Nepomuk Otte EUSO & MAGIC Why new photon detectors?

Outline • • • A. Nepomuk Otte EUSO & MAGIC Why new photon detectors? Photon detector requirements The Si. PM principle Development @ MEPh. I and Pulsar Development @ HLL in Munich MPI für Physik 2

Extreme Universe Space Observatory http: //www. euso-mission. org/ A. Nepomuk Otte MPI für Physik

Extreme Universe Space Observatory http: //www. euso-mission. org/ A. Nepomuk Otte MPI für Physik 3

Major Atmospheric Gamma Imaging Cherenkov Telescope Gamma ray Particle shower ~ 1 o Che

Major Atmospheric Gamma Imaging Cherenkov Telescope Gamma ray Particle shower ~ 1 o Che ren k ov l igh t ~ 10 km ~ 120 m http: //hegra 1. mppmu. mpg. de/MAGICWeb/ A. Nepomuk Otte MPI für Physik 4

Motivation for new Photon Sensors Photon detection efficiency (PDE) of state of the art

Motivation for new Photon Sensors Photon detection efficiency (PDE) of state of the art photomultiplier tubes ≈20% A higher PDE results in a better signal to noise ratio (SNR) ≈ 80% PDE improves SNR by a factor 2… 3 Same effect as increasing the MAGIC mirror from 17 m diameter to 70 m Both experiments can lower their energy threshold with more sensitive sensors A. Nepomuk Otte MPI für Physik 5

What is gained by a lower Threshold? MAGIC EUSO • access to lower γ-energies

What is gained by a lower Threshold? MAGIC EUSO • access to lower γ-energies • extend accessible energy range → deeper look into the universe (higher redshifts) → new sources →Egret 280 sources with 0. 1 m² active detector area (<10 Ge. V) →ACT‘s 15 sources with 5 • 104 m² active detector area (>300 Ge. V) A. Nepomuk Otte – overlap with existing experiments AUGER, AGASA, HIRES • detailed study of GZK cutoff • improved energy resolution MPI für Physik 6

Photon Detector Requirements sensitive range [nm] sensor size [mm²] single photon counting dynamic range

Photon Detector Requirements sensitive range [nm] sensor size [mm²] single photon counting dynamic range per sensor [phe] max. dark noise per pixel [1/s] rate capability per pixel [1/s] detection efficiency radiation hardness EUSO 330… 400 4 x 4 yes 100 104 105 >50% yes MAGIC 300… 600 30 x 30 yes 1000 107 108 >20% no most requirements are similar large differences in sensitive range and pixel size challenging: detection efficiency A. Nepomuk Otte MPI für Physik 7

The Silicon Photomultiplier An avalanche photodiode (APD) in Geiger mode is a high efficient

The Silicon Photomultiplier An avalanche photodiode (APD) in Geiger mode is a high efficient single photon counting device A. Nepomuk Otte MPI für Physik 8

The Silicon Photomultiplier An avalanche photodiode (APD) in Geiger mode is a high efficient

The Silicon Photomultiplier An avalanche photodiode (APD) in Geiger mode is a high efficient single photon counting device BUT: Output signal of a single Geiger APD is independent of number of photoelectrons A. Nepomuk Otte MPI für Physik 9

The Silicon Photomultiplier An avalanche photodiode (APD) in Geiger mode is a high efficient

The Silicon Photomultiplier An avalanche photodiode (APD) in Geiger mode is a high efficient single photon counting device … BUT: Output signal of a single Geiger APD is independent of number of photoelectrons Solution: Combine an array of small Geiger APDs onto the same substrate (less then 1 photon per cell) A. Nepomuk Otte MPI für Physik 10

Development @ MEPh. I and Pulsar Enterprize 1 mm P. Buzhan et al. http:

Development @ MEPh. I and Pulsar Enterprize 1 mm P. Buzhan et al. http: //www. slac-stanford. edu/pubs/icfa/fall 01. html 1 mm about 20% active area limits photon detection efficiency A. Nepomuk Otte MPI für Physik 11

Characteristics characteristics of current prototypes: geometry: 24 x 24 pixels = 576 pixels within

Characteristics characteristics of current prototypes: geometry: 24 x 24 pixels = 576 pixels within 1 mm 2 available up to 1024 pixels / mm² Operating voltage: 50 V to 58 V Gain: 105 up to ~ 5 • 106 single pixel time resolution: 570 ps FWHM single pixel recovery time: 1μs dark count rate: 106 counts per second at room temperature A. Nepomuk Otte MPI für Physik 12

R&D Goals to improve existing MEPh. I -Pulsar Prototypes Luminescence of hot avalanche electrons

R&D Goals to improve existing MEPh. I -Pulsar Prototypes Luminescence of hot avalanche electrons gives rise to crosstalk with neighboring APD cells (40% @ Gain 106) Counter measures: • grooves between pixels to absorb photons • reduce gain (4% Crosstalk @ Gain 105) Photon detection efficiency determined by: • Intrinsic QE • packing density of pixels • Geiger breakdown probability • transmittance of entrance window work on: • reduction of dead area • improve blue sensitivity • optimization of entrance window A. Nepomuk Otte MPI für Physik P. Buzhan et al. NIM A 504 (2003) 48 -52 13

Development @ MPI Semiconductor Laboratory in Munich Different approach to increase photon detection efficiency

Development @ MPI Semiconductor Laboratory in Munich Different approach to increase photon detection efficiency use of back illumination principle → no dead area photon depleted bulk path of the photo electron Si 50µm … 450µm Blow up of one “micro pixel” A. Nepomuk Otte avalanche regions MPI für Physik output 14

Development @ MPI Semiconductor Laboratory in Munich shallow p+ drift path of a photo

Development @ MPI Semiconductor Laboratory in Munich shallow p+ drift path of a photo electron photon n bulk drift rings p+ deep n avalanche region quench resistor output line Simulations are in final stage: • Operating voltage of avalanche region 50 V • Geiger breakdown probability 60%. . . 90% • average drift time differences < 1 ns A. Nepomuk Otte MPI für Physik 15

Summary and Outlook • We investigate the Si. PM as photon detector in MAGIC

Summary and Outlook • We investigate the Si. PM as photon detector in MAGIC and EUSO • First Si. PM prototypes are very promising • Si. PM prototypes already usable for some applications (e. g. PET, Tile. Cal for Tesla) • The development is pursued in two different ways -front illumination @ MEPh. I and Pulsar -back illumination @ HLL in Munich • A lot of R&D ahead: increase effective QE up to 70% increase UV sensitivity reduce crosstalk increase Si. PM size A. Nepomuk Otte MPI für Physik 16