Philips Research University of Twente Faculty of Electrical

  • Slides: 21
Download presentation
Philips Research University of Twente, Faculty of Electrical Engineering A 1 -V 15 W

Philips Research University of Twente, Faculty of Electrical Engineering A 1 -V 15 W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Contents • • • Introduction Circuit fundamentals Design strategy Implementation Specifications Conclusions A 1

Contents • • • Introduction Circuit fundamentals Design strategy Implementation Specifications Conclusions A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Introduction Why need integrated CMOS temperature indicator? – enable thermal protection (shutdown, clock frequency

Introduction Why need integrated CMOS temperature indicator? – enable thermal protection (shutdown, clock frequency lowering etc. ) – use in integrated measurement or control devices A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Introduction Why design switch and not a linear temperature dependent output? – Thermal protection

Introduction Why design switch and not a linear temperature dependent output? – Thermal protection only requires threshold temperature detection (125 °C) – Multiple threshold values together form a digital temperature indicator A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Design goals • • • Standard 0. 18 m CMOS process Low voltage, Low

Design goals • • • Standard 0. 18 m CMOS process Low voltage, Low power, Small area High accuracy Portable Switch temperature of 125 °C Extendable: adjustable switch temperature multiple switch temperatures high accuracy over large T range A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Circuit Fundamentals Use bandgap principle: V T V Vptat V T Vbe T A

Circuit Fundamentals Use bandgap principle: V T V Vptat V T Vbe T A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl Vgap, 0

Circuit Fundamentals Detect crossing of Vptat with Vbe V Vbe T V Vptat T

Circuit Fundamentals Detect crossing of Vptat with Vbe V Vbe T V Vptat T A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Design strategy Identify accuracy limitations: – Bipolar transistor Vbe spread – Resistor matching &

Design strategy Identify accuracy limitations: – Bipolar transistor Vbe spread – Resistor matching & spread – Offset and noise of MOST devices Establish quantitative relation for optimal MOST area distribution A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Design strategy A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R.

Design strategy A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Design strategy Assume: Find equivalent offset (or flicker noise): Minimal total given fixed Areatotal

Design strategy Assume: Find equivalent offset (or flicker noise): Minimal total given fixed Areatotal when: A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Implementation goals: – High amplifier gain; speed may be low. – High supply and

Implementation goals: – High amplifier gain; speed may be low. – High supply and substrate noise rejection. Implementation limitations: – Low supply voltage cascoding difficult. – Folded cascodes not desirable A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Implementation A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P.

Implementation A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Implementation Positive feedback; high gain, small bandwidth A 1 -V 15 m. W High-Precision

Implementation Positive feedback; high gain, small bandwidth A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Implementation Strong points: – Robust circuit, easy to port – Small flicker noise &

Implementation Strong points: – Robust circuit, easy to port – Small flicker noise & offset straightforward use of large transistors instead of using complex dynamic offset cancellation techniques. – No cascoding or shielding low supply voltage – All matched transistors have matched conditions at threshold temperature A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Implementation Weak point: – Nested inner loop stability analysis not straightforward A 1 -V

Implementation Weak point: – Nested inner loop stability analysis not straightforward A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Chip photograph Resistors Diode connected BJTs Transconductance amplifier Comparator 190 m A 1 -V

Chip photograph Resistors Diode connected BJTs Transconductance amplifier Comparator 190 m A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl 150 m

Specifications A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P.

Specifications A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Conclusions • Efficient & Robust Design strategy • Very low power circuit – can

Conclusions • Efficient & Robust Design strategy • Very low power circuit – can decrease further with duty-cycle mode • Good performance without calibration – 3 intra-batch deviation of only 1. 1 C • Design is well-suited for multiple thresholds extension A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de

A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Philips Research University of Twente, Faculty of Electrical Engineering A 1 -V 15 W

Philips Research University of Twente, Faculty of Electrical Engineering A 1 -V 15 W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl

Philips Research University of Twente, Faculty of Electrical Engineering A 1 -V 15 W

Philips Research University of Twente, Faculty of Electrical Engineering A 1 -V 15 W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl A 1 -V 15 m. W High-Precision Temperature Switch D. Schinkel, R. P. de Boer, A. J. Annema and A. J. M. van Tuijl