Network Dynamics and Cell Physiology John J Tyson

  • Slides: 34
Download presentation
Network Dynamics and Cell Physiology John J. Tyson Dept. Biological Sciences Virginia Tech

Network Dynamics and Cell Physiology John J. Tyson Dept. Biological Sciences Virginia Tech

Collaborators Budapest Univ. Techn. & Econ. Bela Novak Attila Csikasz-Nagy Andrea Ciliberto Virginia Tech

Collaborators Budapest Univ. Techn. & Econ. Bela Novak Attila Csikasz-Nagy Andrea Ciliberto Virginia Tech Kathy Chen Dorjsuren Battogtokh Funding James S. Mc. Donnell Foundation DARPA

Computational Molecular Biology DNA …TACCCGATGGCGAAATGC. . . m. RNA …AUGGGCUACCGCUUUACG. . . Protein …Met

Computational Molecular Biology DNA …TACCCGATGGCGAAATGC. . . m. RNA …AUGGGCUACCGCUUUACG. . . Protein …Met -Gly -Tyr -Arg -Phe -Thr. . . Enzyme Reaction Network Cell Physiology -P ATP E 1 ADP X E 2 Y E 3 Z E 4 Last Step

G 1 cell division The cell cycle is the sequence of events whereby a

G 1 cell division The cell cycle is the sequence of events whereby a growing cell replicates all its components and divides them more-or-less evenly between two daughter cells. . . M mitosis S DNA replication G 2

G 1 cell division S Cyclin-dependent kinase Cyclin B P M mitosis DNA replication

G 1 cell division S Cyclin-dependent kinase Cyclin B P M mitosis DNA replication Cdk 1 Cyc. B P G 2

P Wee 1 Cdc 20 Cdc 14 P TFBA Wee 1 Cyc. B Cdc

P Wee 1 Cdc 20 Cdc 14 P TFBA Wee 1 Cyc. B Cdc 25 TFBI APC-P Cdc 14 0 P c 2 Cd Cyc. B Cdc 14 h 1 Cd Cdc 25 CKI Coupled Intra-cellular Cyc. B Networks ! Cyc. D Cyc. E TFII Cdh 1 TFIA CKI CKI Cyc. A Cyc. D Cyc. E Cyc. A Cyc E, A, B 0 c 2 Cd Cyc. E Cyc. A TFEA Cyc. B Cyc. D Cyc. A TFEI

Gene Expression linear rate (d. R/dt) S S=3 S=2 R S=1 response (R) rate

Gene Expression linear rate (d. R/dt) S S=3 S=2 R S=1 response (R) rate of degradation rate of synthesis R signal (S) Signal-Response Curve

Protein Phosphorylation Kinase RP Pi response (RP) R ADP 1. 5 rate (d. RP/dt)

Protein Phosphorylation Kinase RP Pi response (RP) R ADP 1. 5 rate (d. RP/dt) ATP 2 1 0. 5 H 2 O 0. 25 Phosphatase RP 1 R Signal (Kinase) 0 “Buzzer” Goldbeter & Koshland, 1981

Protein Synthesis: Positive Feedback S=16 S=8 rate (d. R/dt) R EP S=0 Closed E

Protein Synthesis: Positive Feedback S=16 S=8 rate (d. R/dt) R EP S=0 Closed E R Bistability Griffith, 1968 Open response (R) S signal (S) “Fuse”

response (R) Example: Fuse dying living signal (S) Apoptosis (Programmed Cell Death)

response (R) Example: Fuse dying living signal (S) Apoptosis (Programmed Cell Death)

S rate (d. R/dt) S=1. 8 R S=1. 2 response (R) Protein Degradation: Mutual

S rate (d. R/dt) S=1. 8 R S=1. 2 response (R) Protein Degradation: Mutual Inhibition SN SN S=0. 6 EP E R Bistability signal (S) “Toggle”

Positive Feedback & Substrate Depletion Hopf response (R) Hopf S substrate X R R

Positive Feedback & Substrate Depletion Hopf response (R) Hopf S substrate X R R EP E sss positive X Oscillation Higgins, 1965; Selkov, 1968 uss signal (S) “Blinker” Glycolytic Oscillations

S response (RP) Negative Feedback Loop YP X X Y Hopf YP R RP

S response (RP) Negative Feedback Loop YP X X Y Hopf YP R RP RP time Goodwin, 1965 signal (S)

Example: Bacterial Chemotaxis Barkai & Leibler, 1997 Goldbeter & Segel, 1986 Bray, Bourret &

Example: Bacterial Chemotaxis Barkai & Leibler, 1997 Goldbeter & Segel, 1986 Bray, Bourret & Simon, 1993

Sniffer X S rate (d. R/dt) S=3 R S X S=2 S=1 R R

Sniffer X S rate (d. R/dt) S=3 R S X S=2 S=1 R R Response is independent of Signal time (Levchenko & Iglesias, 2002)

Example 2: Cell Cycle high SPF high MPF primed MEN fired RC Cdk 2

Example 2: Cell Cycle high SPF high MPF primed MEN fired RC Cdk 2 Cdk 1 Cyc. A Cyc. B primed RC low SPF fired MEN low MPF (Csikasz-Nagy & Novak, 2005)

Cock-and-Fire LA Signal = CDK Cdk 2 Cyc. A + LA F Response =

Cock-and-Fire LA Signal = CDK Cdk 2 Cyc. A + LA F Response = F L

Cock-and-Fire-2 Signal = MPF TA T Cdk 1 + Cyc. B B TA +

Cock-and-Fire-2 Signal = MPF TA T Cdk 1 + Cyc. B B TA + BA Response = BA

P Wee 1 Cdc 20 Cdc 14 P Wee 1 Cyc. B bistable switch

P Wee 1 Cdc 20 Cdc 14 P Wee 1 Cyc. B bistable switch TFBA Cdc 25 TFBI oscillator APC-P Cdc 14 0 P c 2 Cd Cyc. B Cdc 14 h 1 Cd CKI Cdc 25 Cyc. D Cyc. B bistable switch Cyc. E TFII Cdh 1 TFIA CKI CKI Cyc. A Cyc. D Cyc. E Cyc. A Cyc E, A, B bistable switch 0 c 2 Cd Cyc. E Cyc. A TFEA Cyc. B Cyc. D Cyc. A TFEI oscillator

P Wee 1 mass/nucleus Cdc 14 TFBA M Wee 1 Cyc. B S/G 2

P Wee 1 mass/nucleus Cdc 14 TFBA M Wee 1 Cyc. B S/G 2 Cdc 25 TFBI M APC-P Cdc 14 0 P c 2 Cd Cyc. B Cdc 14 h 1 Cd CKI Cdc 25 M Cyc. D Cyc. B Cyc. E TFII Cdh 1 TFIA CKI Cyc. A Cyc. D CKI P Cdc 20 Cyc. E G 1 Cyc. A Cyc E, A, B 0 c 2 Cd Cyc. E TFEA Fission Yeast Cyc. B Cyc. D Cyc. A TFEI Cyc. A

3. 0 Wild type M Cdk 1: Cyc. B 0. 8 0. 4 S/G

3. 0 Wild type M Cdk 1: Cyc. B 0. 8 0. 4 S/G 2 G 1 0 SNIPER 0 1 2 3 mass/nucleus 4 5

Nature, Vol, 256, No. 5518, pp. 547 -551, August 14, 1975 Genetic control of

Nature, Vol, 256, No. 5518, pp. 547 -551, August 14, 1975 Genetic control of cell size at cell division in yeast Paul Nurse Department of Zoology, West Mains Road, Edinburgh EH 9 3 JT, UK wild-type wee 1

P Wee 1 Cdc 20 Cdc 14 Wee 1 Cyc. B Cdc 25 TFBI

P Wee 1 Cdc 20 Cdc 14 Wee 1 Cyc. B Cdc 25 TFBI APC-P Cdc 14 0 P c 2 Cd Cyc. B Cdc 14 h 1 Cd CKI Cdc 25 Cyc. D Cyc. B Cyc. E TFII Cdh 1 TFIA CKI Cyc. A Cyc. D CKI P TFBA Cyc. E Cyc. A Cyc E, A, B 0 c 2 Cd Cyc. E Cyc. A TFEA Cyc. B Cyc. D Cyc. A TFEI

wee 1 cells are about one-half the size of wild type 1. 2 wee

wee 1 cells are about one-half the size of wild type 1. 2 wee 1 Cdk 1: Cyc. B M 0. 8 0. 4 S/G 2 0 G 1 0 1 2 3 mass/nucleus 4 5

Two-parameter Bifurcation Diagram Wee 1 activity GENETICS SNIPER wild-type wee 1 - cell mass

Two-parameter Bifurcation Diagram Wee 1 activity GENETICS SNIPER wild-type wee 1 - cell mass (au. ) PHYSIOLOGY 0 30 60 90 120 150 180 210 240 270 300 period (min) 0 50 100 150 200 250 300 350 400 450 500 550

P Wee 1 Cdc 20 Cdc 14 Wee 1 Cyc. B Cdc 25 TFBI

P Wee 1 Cdc 20 Cdc 14 Wee 1 Cyc. B Cdc 25 TFBI APC-P Cdc 14 0 P c 2 Cd Cyc. B Cdc 14 h 1 Cd CKI Cdc 25 Cyc. D Cyc. B Cyc. E TFII Cdh 1 TFIA CKI Cyc. A Cyc. D CKI P TFBA Cyc. E Cyc. A Cyc E, A, B 0 c 2 Cd Cyc. E Cyc. A TFEA Cyc. B Cyc. D Cyc. A TFEI

The Start module is not required during mitotic cycles 3. 0 cki M Cdk

The Start module is not required during mitotic cycles 3. 0 cki M Cdk 1: Cyc. B 0. 8 0. 4 S/G 2 G 1 0 0 1 2 3 mass/nucleus 4 5

P Wee 1 Cdc 20 Cdc 14 Wee 1 Cyc. B Cdc 25 TFBI

P Wee 1 Cdc 20 Cdc 14 Wee 1 Cyc. B Cdc 25 TFBI APC-P Cdc 14 0 P c 2 Cd Cyc. B Cdc 14 h 1 Cd CKI Cdc 25 Cyc. D Cyc. B Cyc. E TFII Cdh 1 TFIA CKI Cyc. A Cyc. D CKI P TFBA Cyc. E Cyc. A Cyc E, A, B 0 c 2 Cd Cyc. E Cyc. A TFEA Cyc. B Cyc. D Cyc. A TFEI

Cells become progressively smaller without size control cki wee 1 ts 1 st Cdk

Cells become progressively smaller without size control cki wee 1 ts 1 st Cdk 1: Cyc. B 2. 0 0. 8 2 nd M 3 rd 4 th 0. 4 S/G 2 0 G 1 0 1 2 3 mass/nucleus 4 5

P Wee 1 Cdc 20 Cdc 14 Wee 1 Cyc. B Cdc 25 TFBI

P Wee 1 Cdc 20 Cdc 14 Wee 1 Cyc. B Cdc 25 TFBI APC-P Cdc 14 0 P c 2 Cd Cyc. B Cdc 14 h 1 Cd CKI Cdc 25 Cyc. D Cyc. B Cyc. E TFII Cdh 1 TFIA CKI Cyc. A Cyc. D CKI P TFBA Cyc. E Cyc. A Cyc E, A, B 0 c 2 Cd Cyc. E Cyc. A TFEA Cyc. B Cyc. D Cyc. A TFEI

Fission yeast S Act Cyc. A cdc 13 D endoreplication G 2 G 1

Fission yeast S Act Cyc. A cdc 13 D endoreplication G 2 G 1 mitotic cycle M No production of cyclin B (Cdc 13) 2 param bifn diag for Cdc 13 Production of Cdc 13 X Wild type mitotic cycles ? ? endoreplication mass cdc 13 +/D cdc 13 D

The Dynamical Perspective Molecular Mechanism ? ? ? Physiological Properties

The Dynamical Perspective Molecular Mechanism ? ? ? Physiological Properties

The Dynamical Perspective Molecular Mechanism Kinetic Equations Vector Field Stable Attractors Physiological Properties

The Dynamical Perspective Molecular Mechanism Kinetic Equations Vector Field Stable Attractors Physiological Properties

References • Tyson, Chen & Novak, “Network dynamics and cell physiology, ” Nature Rev.

References • Tyson, Chen & Novak, “Network dynamics and cell physiology, ” Nature Rev. Molec. Cell Biol. 2: 908 (2001). • Tyson, Csikasz-Nagy & Novak, “The dynamics of cell cycle regulation, ” Bio. Essays 24: 1095 (2002). • Tyson, Chen & Novak, “Sniffers, buzzers, toggles and blinkers, ” Curr. Opin. Cell Biol. 15: 221 (2003).