MULTIMESSENGER ASTRONOMY Giulia Pagliaroli giulia pagliarolilngs infn it

  • Slides: 24
Download presentation
MULTIMESSENGER ASTRONOMY Giulia Pagliaroli giulia. pagliaroli@lngs. infn. it GSSI, November 2015, L’Aquila

MULTIMESSENGER ASTRONOMY Giulia Pagliaroli giulia. pagliaroli@lngs. infn. it GSSI, November 2015, L’Aquila

Outline u High-Energy Cosmic Neutrinos u Core-Collapse Supernovae u Strange Stars

Outline u High-Energy Cosmic Neutrinos u Core-Collapse Supernovae u Strange Stars

HIGH ENERGY COSMIC NEUTRINOS Collaboration: G. P. , A. Palladino, F. Vissani and F.

HIGH ENERGY COSMIC NEUTRINOS Collaboration: G. P. , A. Palladino, F. Vissani and F. L. Villante References: A. Palladino, G. P. , F. L. Villante, F. Vissani: ar. Xiv: 1510. 05921 G. P. , A. Palladino, F. Vissani, F. L. Villante: ar. Xiv: 1506. 02624 A. Palladino, G. P. , F. L. Villante, F. Vissani, Phys. Rev. Lett. 114 (2015) 17, 171101 F. Vissani, G. P. and F. L. Villante, JCAP 1309 (2013) 017

Flavor Ratios of High Energy Neutrinos The blend of neutrinos (or antineutrinos) at the

Flavor Ratios of High Energy Neutrinos The blend of neutrinos (or antineutrinos) at the source can tell us about the production mechanism Pion Decay Charmed mesons decay Beta decay of neutrons Pion decay with damped muons

Flavor Content at the Earth A different blend of neutrinos (and antineutrinos) arrives at

Flavor Content at the Earth A different blend of neutrinos (and antineutrinos) arrives at the Earth Cosmic Neutrinos Atmospheric Neutrinos Vacuum oscillations fully developed Vacuum oscillations practically absent Pions Neutrons Muons

Ice. Cube Events Topology OBSERVED EVENTS TOPOLOGIES M. G. Aartsen et al. PRL 113,

Ice. Cube Events Topology OBSERVED EVENTS TOPOLOGIES M. G. Aartsen et al. PRL 113, 101101 (201 Probability for a muon neutrino to produce a track event

Predicted Track-to-Shower Ratio The predicted flavor content at the Earth Charms converted into the

Predicted Track-to-Shower Ratio The predicted flavor content at the Earth Charms converted into the observable quantity in Ice. Cube detector, i. e. the track-to-shower ratio is: for Pions Neutrons Muons

Results with 3 years data Charms Pions Neutrons Muons 3 years data-set (HESE+Muons) is

Results with 3 years data Charms Pions Neutrons Muons 3 years data-set (HESE+Muons) is compatible with a cosmic origin of HEN, yet not enough statistic to discriminate the production mechanism.

Testing Unstable Neutrinos NH IH “Non radiative Neutrino decay can be tested using flavor

Testing Unstable Neutrinos NH IH “Non radiative Neutrino decay can be tested using flavor ratios of cosmic HEN” Stable States 3 years data-set (HESE+Muons) already disfavor the decay hypothesis for both the mass hierarchies

CORE COLLAPSE SUPERNOVAE Neutrinos and Gravitational Waves Collaboration: G. P. , E. Katsavounidis, E.

CORE COLLAPSE SUPERNOVAE Neutrinos and Gravitational Waves Collaboration: G. P. , E. Katsavounidis, E. Coccia, C. Casentini, V. Fafone, W. Fulgione, F. Vissani, C. Vigorito, G. Testera, C. D. Ott, V. Re, K. Scholberg, M. Gromov, L. Koepke References: Proposal for data exchange among GW detectors: LIGO, Virgo and neutrinos detectors: Borexino, LVD and Ice. Cube I. Leonor et al. , Class. Quant. Grav. 27 (2010) G. P. et al. , Phys. Rev. Lett. 103 (2009) 031102

The Supernova puzzle Electromagne tic Weak Interaction Strong Interaction Gravity The interplay among the

The Supernova puzzle Electromagne tic Weak Interaction Strong Interaction Gravity The interplay among the known forces is so strong that we rely on very complex numerical simulations EXPLOSION MECHANISM IS STILL UNCERTAIN

Neutrinos and Gravitational Waves (GW) are the only direct probes of the supernova engine.

Neutrinos and Gravitational Waves (GW) are the only direct probes of the supernova engine. EM waves (optical/UV/X/Gam ma): secondary information, late-time probes of engine. Science Case Neutrinos and Gravitational Waves carry complementary information: Neutrinos: primarily thermodynamics GWs: primarily dynamics -> Joint observation will increase new Red Supergiant Betelgeuse D ~200 pc Supernova “Central Engine” slide from C. Ott

Neutrinos Expectations ENERGY FLUENCE DURATION

Neutrinos Expectations ENERGY FLUENCE DURATION

GW expectations ENERGY Dimmelmeier et al Phys. Rev. D 78 (2008) DURATION Amplitude: Frequency:

GW expectations ENERGY Dimmelmeier et al Phys. Rev. D 78 (2008) DURATION Amplitude: Frequency: Uncertainty on the prediction of orders of magnitude! Signals cannot be modeled. It’s very compelling to discriminate These short duration bursts of GWs From the spikes due to the Noise

THE IDEA First neutrino event detected GW Det A SN First neutrino reaching Detector

THE IDEA First neutrino event detected GW Det A SN First neutrino reaching Detector B EARTH Det B

Super. Kamiokande Distance Reach • IN JO T SK 0) 01 (2 • Super-Kamiokande

Super. Kamiokande Distance Reach • IN JO T SK 0) 01 (2 • Super-Kamiokande ’s recent “distant” burst search requiring two neutrino events (with energy threshold 17 Me. V) within 20 seconds shows a ~18% probability of detecting a SN in M 31 Requiring the coincidence with a GW trigger it is possible to lower the threshold to 8. 5 Me. V increasing the detection probability to the ~35%

STRANGE STARS Collaboration: G. P. , M. Mannarelli, L. Pilo, A. Parisi References: M.

STRANGE STARS Collaboration: G. P. , M. Mannarelli, L. Pilo, A. Parisi References: M. Mannarelli et al. , ar. Xiv: 1504. 07402 M. Mannarelli, G. P. , A. Parisi, L. Pilo, Phys. Rev. D 89 (2014) 10, 103014

Strange Stars vs Neutron Stars Strange Matter is characterized by a different equation of

Strange Stars vs Neutron Stars Strange Matter is characterized by a different equation of state (Eo. S) and by very different response to the stress Looking for signatures of the presence of strange matter

Charge Distribution 19 Electrons z Spilled Electrons ELECTROSPHERE CCSC Star Surface is electrically charge

Charge Distribution 19 Electrons z Spilled Electrons ELECTROSPHERE CCSC Star Surface is electrically charge G. Pagliaroli, LNGS z=0

Torsional Oscillation l=1 n=1 20 Top view + + + CCSC CFL + +

Torsional Oscillation l=1 n=1 20 Top view + + + CCSC CFL + + + + + Strong EM emission

Prediction vs Observations 21 • • No periodicity Radio Frequency Band High Emitted Power

Prediction vs Observations 21 • • No periodicity Radio Frequency Band High Emitted Power Short Duration • Only frequencies ≥ GHz (Parkes 64 meter radio telescope) Bandwidth of 400 MHz centered at 1. 382 GHz

Non-bare Strange Star Torsional Oscillation Crust of Normal Matter

Non-bare Strange Star Torsional Oscillation Crust of Normal Matter

Peculiar Crust Breaking Oscillation Amplitude Strain

Peculiar Crust Breaking Oscillation Amplitude Strain

TOP TRAVEL DESTINATIONS 2016 High-Energy Cosmic Neutrinos Core-Collapse Supernovae Strange Stars

TOP TRAVEL DESTINATIONS 2016 High-Energy Cosmic Neutrinos Core-Collapse Supernovae Strange Stars