Molecular Dynamics Simulation of Thermal Conduction over Silicon

  • Slides: 15
Download presentation
Molecular Dynamics Simulation of Thermal Conduction over Silicon. Germanium Interface Ruxandra Costescu Erica Saltzman

Molecular Dynamics Simulation of Thermal Conduction over Silicon. Germanium Interface Ruxandra Costescu Erica Saltzman Zhi Tang

Purpose n n n Thermal conductivity ( ) a measure of thermal transport behavior

Purpose n n n Thermal conductivity ( ) a measure of thermal transport behavior across interfaces is littleunderstood and drastically different from bulk behavior; interface thermal conductance (C) is significant for ultra-thin films (~100 nm). Si and Ge are important to semiconductor and microelectronics industries

Previous Research n n Multilayer and superlattice structures have been investigated experimentally and through

Previous Research n n Multilayer and superlattice structures have been investigated experimentally and through simulation, but the behavior across a single-interface remains poorly described and explained (4). Several MD methods have been attempted: n n n Direct MD, which exhibits inefficient convergence (2) Equilibrium MD, which is strongly dependent on the initial conditions and has a slowly-converging autocorrelation function (2). MD with non-equilibrium thermodynamics (thermostat and zerolimited thermal force) yields best results (11).

Geometry Visualization of silicon-germanium beam. Yellow spheres represent germanium atoms; green spheres represent silicon

Geometry Visualization of silicon-germanium beam. Yellow spheres represent germanium atoms; green spheres represent silicon atoms. Hot and cold baths in silicon-germanium beam.

Boundary Conditions n n Periodic in lateral dimensions Hard-wall in longitudinal dimension

Boundary Conditions n n Periodic in lateral dimensions Hard-wall in longitudinal dimension

Temperature Regulations n n Initial conditions: hot, cold, and intermediate temperatures Velocity rescaling in

Temperature Regulations n n Initial conditions: hot, cold, and intermediate temperatures Velocity rescaling in hot and cold reservoirs

Tersoff Potential Parameters

Tersoff Potential Parameters

Calculations

Calculations

Results n Simulation results: Typical data At 120 K Temperature profile Thermal flux

Results n Simulation results: Typical data At 120 K Temperature profile Thermal flux

Results n Calculations Thermal conductivity NOTES: • In addition: one run at 77. 1

Results n Calculations Thermal conductivity NOTES: • In addition: one run at 77. 1 K (with opposite direction of thermal gradient) and another run at 19. 1 K • Used: Fe= 0. 2 Å-1 (2)

Results n Calculations Interface conductance results

Results n Calculations Interface conductance results

Results n n Discussion Si+Ge(MD) smaller than eq as expected and the right order

Results n n Discussion Si+Ge(MD) smaller than eq as expected and the right order of magnitude; but dependence on temperature unclear DMM prediction of ~108 W/(m 2 K) at 80 K reasonably close to calculated range of CSi/Ge Our values range from ~ 2 - 5 107 W/(m 2 K) the right order of magnitude of C Preliminary calculation for opposite direction of temp. gradient shows drastically different behavior (approximations fail? )

Results n n n Improvements & further study Fe (“fictitious force”) quantum correction direction

Results n n n Improvements & further study Fe (“fictitious force”) quantum correction direction of temperature gradient interface geometry compare t. c. results to exactly equivalent experimental data

References 14. 1. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys.

References 14. 1. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70 22 (1997) 2957. 2. S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84 20 (2000) 4613. 3. D. G. Cahill, A. Bullen, and S. -M. Lee, High temp. - High press. 32 (2000) 134. 4. S. Volz, J. B. Saulnier, G. Chen, and P. Beauchamp, Microelect. J. 75 14 (1999) 2056. 5. J. Zi, K. Zhang and X. Xie, Appl. Phys. Lett. 57 2 (1990) 165. 6. S. Q. Zhou, G. Chen, J. L. Liu, X. Y. Zheng, and K. L. Wang, HTD Proc. of ASME Heat Transfer Division 361 -4 (1998) 249. 7. M. Dornheim and H. Teichler, Phys. Stat. Sol. (A) 171 (1999) 267. 8. M. A. Osman and D. Srivastava, Nanotechn. 12 (2001) 21. 9. J. Che, T. Cagin, and W. A. Goddard, Nanotec. 11 (2000) 65. 10. S. G. Volz and G. Chen, Appl. Phys. Lett. 75 14 (1999) 2056. 11. A. Maeda and T. Munakata, Phys. Rev. E, 52 1 (1995) 234. 12. A. Maiti, G. D. Mahan, and S. T. Pantelides, Solid-State Communications 102 7 (1997) 517. 13. S. Petterson and G. D. Mahan, Phys. Rev. B, 42 12 (1990) 7386. 14. R. Stoner and H. J. Maris, Phys. Rev. B, 48 22 (1993) 16373. 15. E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. , 61 (1989) 605. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 16. 17. 18. 19. 20. 16. S. Matsumoto, S. Munejiri, and T. Itami, National Space Development Agency of Japan, Space Utilization Program Document. Available URL: http: //jem. tksc. nasda. go. jp/utiliz/surp/ar/diffusion/3_6_. pdf. 17. J. Tersoff, Phys. Rev. B, 37 (1988) 6991. 18. J. Tersoff, Phys. Rev. B, 39 (1989) 5566. 19. D. W. Brenner, Phys. Rev. B, 42 (1990) 9458. 20. Theoretical Biophysics Group, University of Illinois, "VMD - Visual Molecular Dynamics". Available URL: http: //www. ks. uiuc. edu/Research/vmd.