Max Planck Institute of Quantum Optics MPQ Garching

  • Slides: 19
Download presentation
Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany Closing loopholes in

Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany Closing loopholes in Bell tests of local realism Johannes Kofler Workshop “Quantum Physics and the Nature of Reality” International Academy Traunkirchen, Austria 22 November 2013

Overview • Assumptions in Bell’s theorem - Realism - Locality - Freedom of choice

Overview • Assumptions in Bell’s theorem - Realism - Locality - Freedom of choice • Closing loopholes - Locality - Freedom of choice - Fair sampling - Coincidence time • Conclusion and outlook

Acknowledgements Sae Woo Nam Marissa Giustina Bernhard Wittmann Rupert Ursin Sven Ramelow Anton Zeilinger

Acknowledgements Sae Woo Nam Marissa Giustina Bernhard Wittmann Rupert Ursin Sven Ramelow Anton Zeilinger Jan-Åke Larsson

History Quantum mechanics and hidden variables 1927 Kopenhagen interpretation (Bohr, Heisenberg, etc. ) 1932

History Quantum mechanics and hidden variables 1927 Kopenhagen interpretation (Bohr, Heisenberg, etc. ) 1932 Von Neumann’s (wrong) proof of nonpossibility of hidden variables 1935 Einstein-Podolsky-Rosen paradox 1952 De Broglie-Bohm (nonlocal) hidden variable theory 1964 Bell’s theorem on local hidden variables 1972 First successful Bell test (Freedman & Clauser) Bohr and Einstein, 1925

Local realism Classical world view: • Realism: Physical properties are (probabilistically) defined prior to

Local realism Classical world view: • Realism: Physical properties are (probabilistically) defined prior to and independent of measurement • Locality: No physical influence can propagate faster than the speed of light External world Passive observers

Bell’s assumptions Assumptions Bell’s 1 Realism: Hidden variables determine global prob. distrib. : p(Aa

Bell’s assumptions Assumptions Bell’s 1 Realism: Hidden variables determine global prob. distrib. : p(Aa 1 b 1, Aa 1 b 2, Aa 2 b 1, …|λ) 2 Locality: (OI)Outcome independence: (SI) Setting independence: factorizability: p(A|a, b, B, λ) = p(A|a, b, λ) = p(A|a, λ) & vice versa for B p(A, B|a, b, λ) = p(A|a, λ) p(B|b, λ) 3 Freedom of choice: (a, b|λ) = (a, b) (λ|a, b) = (λ) J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978) 2 J. S. Bell, Physics 1, 195 (1964) 1 3 J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, p. 243 (2004)

Bell’s Assumptions theorem Realism + Locality + Freedom of choice + X Bell’s inequality

Bell’s Assumptions theorem Realism + Locality + Freedom of choice + X Bell’s inequality Bell’s original derivation 1 only implicitly assumed freedom of choice: explicitly: A(a, b, B, λ) B(a, b, A, λ) locality freedom of choice implicitly: (λ|a, b) A(a, λ) B(b, λ) – (λ|a, c) A(a, λ) B(c, λ) Remarks: 1 2 original Bell paper 1: X = “Perfect anti-correlation” CHSH 2: X = “Fair sampling” J. S. Bell, Physics 1, 195 (1964) J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969)

Loopholes: Why important? maintain local realism despite exp. Bell violation – quantum foundations –

Loopholes: Why important? maintain local realism despite exp. Bell violation – quantum foundations – security of entanglement-based quantum cryptography Three main loopholes: • Locality loophole hidden communication between the parties closed for photons (19821, 19982) • Freedom-of-choice loophole settings are correlated with hidden variables closed for photons (20103) • Fair-sampling (detection) loophole measured subensemble is not representative closed for atoms (20014), superconducting qubits (20095) and for photons (20136) A. Aspect et al. , PRL 49, 1804 (1982) 2 G. Weihs et al. , PRL 81, 5039 (1998) 3 T. Scheidl et al. , PNAS 107, 10908 (2010) 1 E M. A. Rowe et al. , Nature 409, 791 (2001) M. Ansmann et al. , Nature 461, 504 (2009) 6 M. Giustina et al. , Nature 497, 227 (2013) 4 5

Locality & freedom of choice Tenerife b, B La Palma E, A a E

Locality & freedom of choice Tenerife b, B La Palma E, A a E La Palma Locality: Tenerife A is space-like sep. from b and B B is space-like sep. from a and A Freedom of choice: p(A, B|a, b, ) = p(A|a, ) p(B|b, ) a and b are random a and b are space-like sep. from E p(a, b| ) = p(a, b) T. Scheidl, R. Ursin, J. K. , T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, 10908 (2010)

Fair-sampling loophole Fair sampling: Local detection efficiency depends only on hidden variable: A =

Fair-sampling loophole Fair sampling: Local detection efficiency depends only on hidden variable: A = A( ), B = B( ) observed outcomes faithfully reproduce the statistics of all emitted particles Unfair sampling: Local detection efficiency is setting-dependent A = A(a, ), B = B(b, ) fair-sampling (detection) loophole 1 • Local realistic models 2, 3 Reproduces the quantum predictions of the singlet state with detection efficiency 2/3 • Detection efficiency is not optional in security-related tasks (device-independent quantum cryptography): faked Bell violations 4 P. M. Pearle, PRD 2, 1418 (1970) 2 F. Selleri and A. Zeilinger, Found. Phys. 18, 1141 (1988) 3 N. Gisin and B. Gisin, Phys. Lett. A 260, 323 (1999) 1 4 I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, C. Kurtsiefer, PRL 107, 170404 (2011)

CHSH vs. CH/Eberhard inequality CHSH inequality 1 - two detectors per side - correlation

CHSH vs. CH/Eberhard inequality CHSH inequality 1 - two detectors per side - correlation functions - fair-sampling assumption used in derivation - requires indep. verific. of tot > 82. 8 %2 - maximally entangled states optimal CH 3 (Eberhard 3) inequality - only one detector per side - probabilities (counts) - no fair-sampling assumption in the derivation - no requirement to measure tot - impossible to violate unless tot > 66. 7 % - non-max. entangled states optimal J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969) 2 A. Garg and N. D. Mermin, PRD 35, 3831 (1987) 1 3 4 J. F. Clauser and M. A. Horne, PRD 10, 526 (1974) P. H. Eberhard, PRA 47, 747 (1993)

Transition-edge sensors Working principle - Superconductor ( 200 nm thick tungsten film at 100

Transition-edge sensors Working principle - Superconductor ( 200 nm thick tungsten film at 100 m. K) at transition edge - Steep dependence of resistivity on temperature - Measurable temperature change by single absorbed photon Characteristics - High efficiency > 95 %2 - Low noise < 10 Hz 2 - Photon-number resolving 1 2 Picture from: Topics in Applied Physics 99, 63 -150 (2005) A. E. Lita, A. J. Miller, S. W. Nam, Opt. Express 16, 3032 (2008) Superconducting transition-edge sensors 1

Setup • Sagnac-type entangled pair source • Non-max. entangled states • Fiber-coupling efficiency >

Setup • Sagnac-type entangled pair source • Non-max. entangled states • Fiber-coupling efficiency > 90% • Filters: background-photon elimination > 99% M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K. , J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013)

Experimental results • Violation of Eberhard’s inequality 1 • 300 seconds per setting combination

Experimental results • Violation of Eberhard’s inequality 1 • 300 seconds per setting combination • Collection efficiency tot 75% • No background correction etc. Photon: only system for which all main loopholes are now closed (not yet simultaneously) Exp. data 1 Model 2 Deviation C(a 1, b 1) C(a 1, b 2) C(a 2, b 1) C(a 2, b 2) SA(a 1) SB(b 1) J 1 069 306 1 068 886 – 0, 04 % 1 152 595 1 152 743 0, 01 % 1 191 146 1 192 489 0, 11 % 69 749 68 694 – 1, 51 % 1 522 865 1 538 766 1, 04 % 1 693 718 1 686 467 – 0, 43 % – 126 715 M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K. , J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013) 2 J. K. , S. Ramelow, M. Giustina, A. Zeilinger, ar. Xiv: 1307. 6475 [quant-ph] (2013) 1

The coincidence-time loophole Fair coincidences: Local detection time depends only on hidden variable: TA

The coincidence-time loophole Fair coincidences: Local detection time depends only on hidden variable: TA = TA( ), TB = TB( ) identified pairs faithfully reproduce the statistics of all detected pairs Unfair coincidences: Detection time is setting-dependent TA = TA(a, ), TB = TB(b, ) coincidence-time loophole 1 Local realistic model: Standard “moving windows” technique: coincidence if |TA(a, ) –TB(b, )| ½ a 2 b 2 coincidences are missed, CH/Eberhard violated 1 J. -Å. Larsson and R. Gill, EPL 67, 707 (2004)

Closing the coincidence-time loophole a) Moving windows coincidence-time loophole open b) Predefined fixed local

Closing the coincidence-time loophole a) Moving windows coincidence-time loophole open b) Predefined fixed local time slots coincidence-time loophole closed c) Triple window for a 2 b 2 coincidence-time loophole closed J. -Å. Larsson, M. Giustina, J. K. , B. Wittmann, R. Ursin, S. Ramelow, ar. Xiv: 1309. 0712 (2013)

Application to experimental data Triple-window method coinc. -time loophole closed Fixed time slots coinc.

Application to experimental data Triple-window method coinc. -time loophole closed Fixed time slots coinc. -time loophole closed Moving windows coinc. -time loophole open simultaneous closure of fair-sampling (detection) and coincidence-time loophole J. -Å. Larsson, M. Giustina, J. K. , B. Wittmann, R. Ursin, and S. Ramelow, ar. Xiv: 1309. 0712 (2013)

Conclusion and outlook Loophole: How to close: Locality space-like separate A & b, B

Conclusion and outlook Loophole: How to close: Locality space-like separate A & b, B and B & a, A a, b random Freedom of choice space-like separate E & a, b random Fair sampling (detection) use CHSH and also show > 82. 8% or use CH/Eberhard Coincidencetime use fixed time slots or window-sum method • Photons: each of the loopholes has been closed, albeit in separate experiments • Loophole-free experiment still missing but in reach

Loopholes hard/impossible to close Futher loopholes: Superdeterminism: Common cause for E and a, b

Loopholes hard/impossible to close Futher loopholes: Superdeterminism: Common cause for E and a, b Wait-at-the-source: E is further in the past; pairs wait before they start travelling Wait-at-the setting: a, b futher in the past; photons used for the setting choice wait before they start traveling Wait-at-the-detector: A, B are farther in the future, photons wait before detection, “collapse locality loophole” Actions into the past … E