Isospin Symmetry test on 44 the semimagic Cr

  • Slides: 18
Download presentation
Isospin Symmetry test on 44 the semimagic Cr Toward the dripline in the f

Isospin Symmetry test on 44 the semimagic Cr Toward the dripline in the f 7/2 shell

44 Cr • N=20, 40 Ca +4 protons • Mid mass, Tz=-2 • 36

44 Cr • N=20, 40 Ca +4 protons • Mid mass, Tz=-2 • 36 Ca@RISING N=Z

T=1 and T=2 mirror nuclei • Shell evolution • Gaps Z=14 and N=14 •

T=1 and T=2 mirror nuclei • Shell evolution • Gaps Z=14 and N=14 • No cross shell excitations f 7/2 d 3/2 s 1/2 f 7/2 N, Z=20 d 3/2 s 1/2 d 5/2 N, Z=20 π ν 36 Ca π ν 36 S

Cross conjugate nuclei f 7/2 d 3/2 s 1/2 f 7/2 N, Z=20 d

Cross conjugate nuclei f 7/2 d 3/2 s 1/2 f 7/2 N, Z=20 d 3/2 s 1/2 d 5/2 N, Z=20 π ν π 44 Cr ν 44 Ca f 7/2 d 3/2 s 1/2 f 7/2 N, Z=20 d 3/2 s 1/2 d 5/2 N, Z=20 π ν 36 Ca π ν 36 S

44 Cr f 5/2 p 1/2 p 3/2 f 7/2 N, Z=20 π π

44 Cr f 5/2 p 1/2 p 3/2 f 7/2 N, Z=20 π π ν 44 Cr 1157 2+ 44 Ca 1248 2+ 0+ 44 Ca B(E 2)[e 2 fm 4] ν 1360 2+ 0+ 0+ Exp kb 3 g gxpf 1 a 104 9. 8 10. 3 N, Z=20

44 Cr p 3/2 f 7/2 N, Z=20 d 3/2 s 1/2 π π

44 Cr p 3/2 f 7/2 N, Z=20 d 3/2 s 1/2 π π ν 44 Cr 1157 2+ 44 Ca 1248 2+ 0+ 44 Ca B(E 2)[e 2 fm 4] ν 1360 2+ 0+ 0+ 1571 2+ 0+ Exp kb 3 g gxpf 1 a sdfp 104 9. 8 10. 3 105. 6

Particle-hole cross-shell excitations 1157 2+ 1248 2+ 0+ 44 Ca B(E 2)[e 2 fm

Particle-hole cross-shell excitations 1157 2+ 1248 2+ 0+ 44 Ca B(E 2)[e 2 fm 4] 1360 2+ 0+ 0+ 1571 2+ 0+ Exp kb 3 g gxpf 1 a sdfp 104 9. 8 10. 3 105. 6

44 Cr • Isospin symmetric: 44 Ca 3307 Sp = 2800 ke. V (SY)

44 Cr • Isospin symmetric: 44 Ca 3307 Sp = 2800 ke. V (SY) 0+ 44 Cr 3285 6+ 2283 4+ 1157 2+ 0+ 44 Ca 3 -

f 7/2 shell and INC nuclear forces VCm, VCM 49 25 Mn 24 49

f 7/2 shell and INC nuclear forces VCm, VCM 49 25 Mn 24 49 24 Cr 25 VB From the MED we extract information of nuclear structure properties How the nucleus generates its angular momentum Evolution of the deformation along a rotational band Isospin non-conserving terms in the nuclear interaction Learn about the configuration of the states

36 Ca Fragmentation: 40 Ca → 37 Ca 38 µbarn Knock-out: 37 Ca →

36 Ca Fragmentation: 40 Ca → 37 Ca 38 µbarn Knock-out: 37 Ca → 36 Ca 2 mbarn from 40 Ca

44 Cr Fragmentation: 50 Cr → 45 Cr 1. 5 µbarn Knock-out: 45 Cr

44 Cr Fragmentation: 50 Cr → 45 Cr 1. 5 µbarn Knock-out: 45 Cr → 44 Cr 2 mbarn from 50 Cr

44 Cr Fragmentation: 58 Ni → 45 Cr 0. 6 µbarn Knock-out: 45 Cr

44 Cr Fragmentation: 58 Ni → 45 Cr 0. 6 µbarn Knock-out: 45 Cr → 44 Cr 2 mbarn from 58 Ni

Feasibility: fragmentation + knock-out • Comparison to 36 Ca: – – Cross section: /50

Feasibility: fragmentation + knock-out • Comparison to 36 Ca: – – Cross section: /50 AGATA efficiency: x 5 AGATA resolution: x 2 Energy of the gamma (3. 0→ 1. 2 Me. V): x 3 – Beam current: x 30 (3*108→ 1010) • 44 Cr now is a factor 20 easier! P. Doornenbal et al. Physics Letters B 647 (2007) 237– 242

Feasibility: fragmentation + coulex • Directly produced 44 Cr: 24 nbarn – More than

Feasibility: fragmentation + coulex • Directly produced 44 Cr: 24 nbarn – More than an order of magnitude lost • Coulex on secondary target – 2+ predicted collective (2 p 2 h, 4 p 4 h) – Enhanced B(E 2) – Good excitation cross section (~200 mbarn) • Factor of ~10 in statistics for the 2+

B(E 1) in T=2 • Janecke: EC (A, T, TZ)= EC 0(A, T) -

B(E 1) in T=2 • Janecke: EC (A, T, TZ)= EC 0(A, T) - Tz EC 1(A, T) + (3 Tz 2 -T(T+1))EC 2(A, T) • Warburton “Corresponding E 1 transition in conjugate nuclei have equal strength” • T=2 Tz=-2 EC = EC 0 + 2 EC 1(A, 2) + 6 EC 2(A, T) • T=2 Tz=-1 EC = EC 0 + 1 EC 1(A, 2) - 3 EC 2(A, T) • T=2 Tz=0 EC = EC 0 + • T=2 Tz=+1 - 6 EC 2(A, T) EC = EC 0 + 1 EC 1(A, 2) - 3 EC 2(A, T) • T=2 Tz=+2 EC = EC 0 - 2 EC 1(A, 2) + 6 EC 2(A, T) WILKINSON - ISOSPIN IN NUCLEAR PHYSICS