High energy n Gravitational wave detectors New windows

  • Slides: 38
Download presentation
High energy n & Gravitational wave detectors: New windows on the universe Eli Waxman

High energy n & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL

Non electro-magnetic “messengers” Me. V n detectors: • Solar & SN 1987 A n’s

Non electro-magnetic “messengers” Me. V n detectors: • Solar & SN 1987 A n’s • Stellar physics (Sun’s core, SNe core collapse) • n physics High energy n & GW detectors • New, non-EM windows • Penetrate deep into the source • Travel unhindered across the universe This talk • The Astrophysics case for HEN detectors • Relation to GW detectors • Fundamental physics

High energy n’s: A new window >0. 1 Te. V n detectors: • Extend

High energy n’s: A new window >0. 1 Te. V n detectors: • Extend n horizon to extra-Galactic scale Me. V n detectors limited to local (~Galactic) sources [10 kt @ 1 Me. V 1 Gton @ Te. V , s. Te. V/s. Me. V~106 ] • Study “Cosmic accelerators” [pg, pp p’s n’s] • n physics

HEN detector motivation: Cosmic accelerators log [d. J/d. E] E-2. 7 Galactic Protons E-3

HEN detector motivation: Cosmic accelerators log [d. J/d. E] E-2. 7 Galactic Protons E-3 Source: Supernovae(? ) X-Galactic (? ) Heavy Nuclei Source? Light Nuclei? Lighter Source? 1 106 1010 Cosmic-ray E [Ge. V] [Blandford & Eichler, Phys. Rep. 87; Axford, Ap. JS 94; Nagano & Watson, Rev. Mod. Phys. 00]

The 1020 e. V challenge v R /G B v G 2 2 R

The 1020 e. V challenge v R /G B v G 2 2 R G 2 l =R/G (dt. RF=R/Gc) [Waxman 95, 04, Norman et al. 95]

What do we know about >1019 e. V CRs? • X-Galactic - RL=e/e. B=40

What do we know about >1019 e. V CRs? • X-Galactic - RL=e/e. B=40 ep, 20 kpc >> hdisk=0. 1 kpc (kpc=3 light yr) - L>1012 (G 2/b) Lsun • Composition

Composition clues Hi. Res 2005

Composition clues Hi. Res 2005

What do we know about >1019 e. V CRs? • X-Galactic - RL=e/e. B=30

What do we know about >1019 e. V CRs? • X-Galactic - RL=e/e. B=30 ep, 20 kpc >> hdisk=0. 1 kpc (kpc=3 light yr) - L>1012 (G 2/b) Lsun • Composition- light nuclei? • Spectrum

Flux & Spectrum • E 2(d. N/d. E)=E 2(d. Q/d. E) teff. (teff. :

Flux & Spectrum • E 2(d. N/d. E)=E 2(d. Q/d. E) teff. (teff. : p + g. CMB N + p) Assume: p, d. Q/d. E~(1+z)m. E-a cteff [Mpc] log(E 2 d. Q/d. E) [erg/Mpc 2 yr] GZK (CMB) suppression [Katz & Waxman 09] • >1019. 3 e. V: consistent with protons, E 2(d. Q/d. E) ~1043. 7 erg/Mpc 3 yr + GZK [Waxman 1995; Bahcall & Waxman 03] • E 2(d. Q/d. E) ~Const. : Consistent with shock acceleration [Krimsky 77; Bednarz & Ostrowski 98; Keshet & Waxman 05 cf. Lemoine & Revenu 06]

What do we know about >1019 e. V CRs? • X-Galactic - RL=e/e. B=30

What do we know about >1019 e. V CRs? • X-Galactic - RL=e/e. B=30 ep, 20 kpc >> hdisk=0. 1 kpc (kpc=3 light yr) - L>1012 (G 2/b) Lsun • Composition- light nuclei? • Spectrum >1019. 3 e. V: consistent with protons, E 2(d. Q/d. E) ~1043. 7 erg/Mpc 3 yr + GZK • Sources: - L>1012 (G 2/b) Lsun - E 2(d. Q/d. E) ~1043. 7 erg/Mpc 3 yr - d(1020 e. V)<d. GZK~100 Mpc !! No L>1012 Lsun at d<d. GZK Transient Sources

Anisotropy clues Biased (rsource~map rgal for rgal>~rrgal )) CR intensity (rsource gal [Kashti &

Anisotropy clues Biased (rsource~map rgal for rgal>~rrgal )) CR intensity (rsource gal [Kashti & Waxman 08] Galaxy density integrated to 75 Mpc [Waxman, Fisher & Piran 1997] • Cross-correlation signal in the > 1019. 7 e. V Auger data: Anisotropy @ 98% CL; Consistent with LSS (Few fold increase >99% CL, but not 99. 9% CL) • Correlation (~1. 5 s) suggests astrophysical (“bottom up”) accelerators

Suspects - L>1012 (G 2/b) Lsun - E 2(d. Q/d. E) ~1043. 7 erg/Mpc

Suspects - L>1012 (G 2/b) Lsun - E 2(d. Q/d. E) ~1043. 7 erg/Mpc 3 yr Gamma-ray Bursts (GRBs) G~ 102. 5, Lg~ 1019 LSun L/G 2 >1012 Lsun [Waxman 95, Vietri 95, Milgrom & Usov 95] (dn/d. Vdt)*E~10 -9. 5 /Mpc 3 yr *1053. 5 erg ~1044 erg/Mpc 3 yr Transient: DTg~10 s, DTp/DTg ~1011 Active Galactic Nuclei (AGN, Steady): G~ 101 L>1014 LSun= few brightest !! Non at d<d. GZK Invoke: “Dark” (proton only) AGN L~ 1014 LSun , Dt~1 month flares from stellar disruptions [Waxman 95] [Blandford 76; Lovelace 76] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

Extra-galactic Jets: some pic’s Virgo cluster: 50 million light yrs M 87

Extra-galactic Jets: some pic’s Virgo cluster: 50 million light yrs M 87

Multi-wavelength observations X-ray Radio

Multi-wavelength observations X-ray Radio

Chandra, Cen A

Chandra, Cen A

Source physics challenges • GRB: • AGN: • MQ: 1019 LSun, MBH~1 Msun, M~1

Source physics challenges • GRB: • AGN: • MQ: 1019 LSun, MBH~1 Msun, M~1 Msun/s, G~102. 5 1014 LSun, MBH~109 Msun, M~1 Msun/yr, G~101 105 LSun, MBH~1 Msun, M~10 -8 Msun/yr, G~100. 5 Particle acceleration

The GRB “engine” • Eg~1051. 5 erg (Eg, apparent~1053. 5 erg) + Dt~1 ms

The GRB “engine” • Eg~1051. 5 erg (Eg, apparent~1053. 5 erg) + Dt~1 ms Grav. Collapse of few Msun to BH (E~Mc 2, Dt~GM/c 3) • T~0. 1 -10 s >> Dt~1 ms Accretion disk • 100 Me. V photons G>100 • Progenitor: Compact Binary Merger (NS-NS, NS-BH) Collapse of a massive star (>20 Msun) [Goodman 86; Paczynski 86 Narayan, Paczynski & Piran 02] [Woosley 93; Paczynski 98] • Short (0. 1 s) bursts? Long bursts (10 s)?

Long GRBs and SNe • 4 long GRBs associated with SN Ib/c (core collapse

Long GRBs and SNe • 4 long GRBs associated with SN Ib/c (core collapse of massive He, C/O progenitors) - 3 have Eg, apparent~1048 erg~10 -5 x 1053 erg, 1 intermediate - 2 SN-less long GRBs “SN Ib/c origin of long GRBs definitively established” [Woosley & Bloom 06] • Some (<10 -2) SN Ib/c produce (low L? ) GRBs - What determines whether to GRB or not to GRB? (“failed” vs. “successful” jets? ) - Do all core-collapse SN produce jets? - Do jets play a major role in ejecting the envelopes in all core-collapse SNe? (envelope ejection- major open Q)

Massive BHs @ Galactic centers • Existence inferred from - AGN activity [Salpeter 64;

Massive BHs @ Galactic centers • Existence inferred from - AGN activity [Salpeter 64; Zel’dovich & Novikov 64] - Stellar motions [Genzel et al. ] MBH~106. 5 Msun • Robs~104 RS Really BHs? - Disk Water Masers [Miyoshi et al. 95] MBH~107. 5 Msun

MBH “progenitor” Q’s • MBH “seeds” - ~100 Msun from 1 st generation massive

MBH “progenitor” Q’s • MBH “seeds” - ~100 Msun from 1 st generation massive stars - ~104 Msun from direct collapse • What is the outcome of galaxy mergers? (BH merger by gas/stellar drag? ) • The role of accretion vs. mergers? [e. g. Madau & Rees 01] [e. g. Rees 78]

Source physics challenges • GRB: • AGN: • MQ: 1019 LSun, MBH~1 Msun, M~1

Source physics challenges • GRB: • AGN: • MQ: 1019 LSun, MBH~1 Msun, M~1 Msun/s, G~102. 5 1014 LSun, MBH~109 Msun, M~1 Msun/yr, G~101 105 LSun, MBH~1 Msun, M~10 -8 Msun/yr, G~100. 5 Jet acceleration Energy extraction Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms

HE n Astronomy • p+g N+p p 0 2 g ; p+ e+ +

HE n Astronomy • p+g N+p p 0 2 g ; p+ e+ + ne + nm Identify UHECR sources Study BH accretion/acceleration physics • E 2 d. Q/d. E=1044 erg/Mpc 3 yr & tgp<1: [Waxman & Bahcall 99] ~1 Giga-ton (~1 km 3) detector required • If X-G p’s: [Berezinsky & Zatsepin 69] Identify primaries, determine f(z)

HE n experiments • Optical Cerenkov - South Pole Amanda: 677 OM, 0. 05

HE n experiments • Optical Cerenkov - South Pole Amanda: 677 OM, 0. 05 km 3 Ice. Cube: +~800/yr OM (05/06…) 4800 OM=1 km 3 s - Mediterranean Antares: 12 lines (5/08), 900 OM, ~0. 1 km 3 Nestor: (? ) 0. 1 km 3 Net: R&D 1 km 3 • UHE: Radio Air shower Aura, Ariana (in Ice) Auger (nt) ANITA (Balloon) EUSO (? ) LOFAR

GRB n’s • “Generic” baryonic jet n’s [Waxman & Bahcall 97, 99; Rachen &

GRB n’s • “Generic” baryonic jet n’s [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04] • Background free • (Successful/failed) Jet penetration of massive stellar envelope Enhanced Te. V n emission [Meszaros & Waxman 01; Razzaque, Meszaros & Waxman 03, 04; Guetta & Granot 03; Dermer & Atoyan 03; Horiuchi & Ando 08]

The current limit [Achterberg et al. 07 (The Ice. Cube collaboration)]

The current limit [Achterberg et al. 07 (The Ice. Cube collaboration)]

Jets driving core collapse SNe? • Mildly relativistic, G~3, E~1051. 5 erg jet driving

Jets driving core collapse SNe? • Mildly relativistic, G~3, E~1051. 5 erg jet driving a core-collapse SN Nm(>100 Ge. V)~1 (D/20 Mpc)-2 /km 2 [Razzaque, Meszaros & Waxman 04; Ando & Beacom 05; Horiuchi & Ando 08] • SN rate within 20 Mpc ~10/yr

AGN n models BBR 05 Individual sources unlikely to be identified

AGN n models BBR 05 Individual sources unlikely to be identified

n- physics & astro-physics • p decay ne: nm: nt = 1: 2: 0

n- physics & astro-physics • p decay ne: nm: nt = 1: 2: 0 (Osc. ) ne: nm: nt = 1: 1: 1 t appearance experiment [Waxman & Bahcall 97] • GRBs: n-g timing (10 s over Hubble distance) LI to 1: 1016; WEP to 1: 106 [Waxman & Bahcall 97; Amelino-Camelia, et al. 98; Coleman &. Glashow 99; Jacob & Piran 07] • EM energy loss of m’s (and p’s) ne: nm: nt = 1: 1: 1 (E>E 0) 1: 2: 2 GRBs: E 0~1015 e. V [Rachen & Meszaros 98; Kashti & Waxman 05]

GW Astronomy NS-NS(BH) merger • Rapid mass motion (changing quadrapole moment) GW: gmn=hmn+hmn, u~(wch)2/G

GW Astronomy NS-NS(BH) merger • Rapid mass motion (changing quadrapole moment) GW: gmn=hmn+hmn, u~(wch)2/G P~Gw 2(mv 2)2/c 5 h~(v/c)2 Rs/D ~ Rs 2/d*D (Rs=2 GM/c 2) • Detection: Lisa science paper • Rs(1 Msun)=3*105 cm=3 km D*h~105 cm

Km-scale detectors • LIGO (x 3), Virgo (GEO 600, TAMA) LIGO detector noise •

Km-scale detectors • LIGO (x 3), Virgo (GEO 600, TAMA) LIGO detector noise • NS-NS(BH): D*h~105 cm D~30 Mpc GRB rate ~1/100 yr x 10 improvement required (Advanced LIGO) • Core-collapse SNe (~10/yr out to 20 Mpc)? If driven by Proto-NS oscillations (+ coupling of l=1 & l=2 modes) [Ott et al. 06] v/c~0. 1, ~0. 1 M, h*D~102. 5 cm

MBHs @ Galactic centers • 1010 galaxies in Hubble volume Each undergone a merger

MBHs @ Galactic centers • 1010 galaxies in Hubble volume Each undergone a merger in Hubble time 1 [x log(Mmax/Mmin)] MBH merger/yr • Open Q’s reminder: Seed mass, Merger/accretion • Rs(106. 5 Msun)=1012 cm=107 km [Volonteri 06]

LISA: ~1012 cm space detector • MBH In-spiral, merger & relaxation • Confirm: GR

LISA: ~1012 cm space detector • MBH In-spiral, merger & relaxation • Confirm: GR MBH • Study: MBH formation history MBH properties Stellar dynamics near MBH • MBH-10 Msun BH merger Test GR MBH Lisa science paper

GR & Cosmology tests • Detect GW (directly) • Confirm GR BHs • BH-BH

GR & Cosmology tests • Detect GW (directly) • Confirm GR BHs • BH-BH mergers: “clean”, signal (should be) precisely calculable Precision tests of strong field GR • Absolute DL(z): h~Rs/DL, w~(1+z)-1 c/Rs Requires: Optical z; Challenge: Dq>1 o Constrain geometry, Dark energy EOS. .

Outlook • • HEN & GW detectors: New non-EM windows Open Q’s (known unknowns)

Outlook • • HEN & GW detectors: New non-EM windows Open Q’s (known unknowns) - Composition, origin & acceleration of CRs - GRB progenitors - Core collapse supernovae mechanism - Formation, evolution & properties of MBHs - Accretion, energy extraction & jet formation by BHs - The environment of MBHs - DL(z) - n Oscillations (t appearance) - gn Timing LI to 1: 1016; WEP to 1: 106 - Confirm: GW, GR BH - Test strong field GR [DM annihilation detection, relic GW background] • (unknowns? ) EM identification crucial - Reduce backgrounds - Astro and fundamental physics implications

AMANDA & Ice. Cube

AMANDA & Ice. Cube

The Mediterranean effort • ANTARES (NESTOR, NEMO) KM 3 Ne. T

The Mediterranean effort • ANTARES (NESTOR, NEMO) KM 3 Ne. T

Back up slides

Back up slides