Xray detectors single photon detectors scintillation detectors gasfilled

  • Slides: 19
Download presentation
X-ray detectors • single photon detectors – scintillation detectors – (gas-filled) proportional counters –

X-ray detectors • single photon detectors – scintillation detectors – (gas-filled) proportional counters – semiconductor detectors • linear (position-sensitive) detectors – gas-filled (wire) detectors – charge-coupled devices (CCD’s) • area detectors – 2 -D wire detectors – CCD area detectors • X-ray film

Gas-filled proportional counter A proportional counter consists of the following main components: • a

Gas-filled proportional counter A proportional counter consists of the following main components: • a gas-filled cylindrical envelope (usually Ar, Kr, or Xe) • a central anode wire Cullity (cathode at high voltage? ) • a grounded coaxial cylinder (the cathode) • an X-ray transparent window Klug & Alexander (grounded cathode)

Gas-filled proportional counter • When an X-ray photon ionizes a gas molecule, the ejected

Gas-filled proportional counter • When an X-ray photon ionizes a gas molecule, the ejected photoelectrons are accelerated to the anode – low voltages – photoelectrons don’t have enough energy to ionize other molecules – intermediate voltages – gas amplification occurs (photoelectrons ionize gas molecules on the way to the anode – high voltages – discharge occurs throughout the gas volume

The scintillation detector • most common detector in materials analysis by X-ray diffraction •

The scintillation detector • most common detector in materials analysis by X-ray diffraction • the detector has two basic elements: – a crystal that fluoresces visible light (scintillates) when struck by X-ray photons – a photomultiplier tube (PMT) that converts the light to electrical pulses Na. I(Tl) scintillator (very sensitive to moisture) – emits around 4200Å Cs. Sb photocathode – ejects electrons gain ~5 per dynode (total gain with ten dynodes is 510 107)

Semiconductor detectors • Semiconductor detectors are solid-state proportional counters – each photon produces electron-hole

Semiconductor detectors • Semiconductor detectors are solid-state proportional counters – each photon produces electron-hole (e/h) pairs • The detection of e/h pairs would not be possible if the semiconductor has free carriers (n-type or p-type) so it must be intrinsic – this can be done by “lithium drifting” p p n apply V heat p--Si Li+ n i Li+ lithium lightly p-doped Si has Li plated heat to have the Li diffuse apply a reverse bias to cause Li+ ions to “drift a wide central intrinsic region is formed

Random aspects of semiconductor detectors • originally: Si(Li) and Ge(Li) – “silly” and “jelly”

Random aspects of semiconductor detectors • originally: Si(Li) and Ge(Li) – “silly” and “jelly” • now intrinsic Si and intrinsic Ge are available (Ge better due to higher absorption and better energy resolution) • energy resolution about 2% • small signal requires a charge-sensitive preamp integrated with the detector • due to thermal e/h generation and noise in the preamp, cooling to 77 K is needed • new detectors use Si p-i-n photodiodes and large bandgap materials (Cd. Te and Cd. Zn. Te) for room-temperature operation

Random aspects of semiconductor detectors • originally: Si(Li) and Ge(Li) – “silly” and “jelly”

Random aspects of semiconductor detectors • originally: Si(Li) and Ge(Li) – “silly” and “jelly” • now intrinsic Si and intrinsic Ge are available (Ge better due to higher absorption and better energy resolution) • energy resolution about 2% • small signal requires a charge-sensitive preamp integrated with the detector • due to thermal e/h generation and noise in the preamp, cooling to 77 K is needed • new detectors use Si p-i-n photodiodes and large bandgap materials (Cd. Te and Cd. Zn. Te) for room-temperature operation

Diffractometer operation • The steps taken in diffractometer operation depends on whether the system

Diffractometer operation • The steps taken in diffractometer operation depends on whether the system is being used for powder analyses or single crystal analyses

Neutrons and electron diffraction Louis de Broglie: h=6. 62606896× 10− 34 J. s

Neutrons and electron diffraction Louis de Broglie: h=6. 62606896× 10− 34 J. s

X-ray Fluorescence Spectrometry (XRF)

X-ray Fluorescence Spectrometry (XRF)

Energy dispersive spectrometry schematic arrangement of EDX spectrometer

Energy dispersive spectrometry schematic arrangement of EDX spectrometer

Wavelength dispersive spectrometry (WDS)

Wavelength dispersive spectrometry (WDS)

Crystals • • • The desirable characteristics of a diffraction crystal are: High diffraction

Crystals • • • The desirable characteristics of a diffraction crystal are: High diffraction intensity High dispersion Narrow diffracted peak width High peak-to-background Absence of interfering elements Low thermal coefficient of expansion Stability in air and on exposure to X-rays Ready availability Low cost

 • Normally, the maximum achievable θ angle in a WDS system is about

• Normally, the maximum achievable θ angle in a WDS system is about 73◦. Thus, the maximum λ of characteristic X-rays being diffracted is about 1. 9 d of the analyzing crystal.

 • Crystals with simple structure tend to give the best diffraction performance. Crystals

• Crystals with simple structure tend to give the best diffraction performance. Crystals containing heavy atoms can diffract well, but also fluoresce themselves, causing interference. Crystals that are water-soluble, volatile or organic tend to give poor stability. • Commonly used crystal materials include Li. F (lithium fluoride), ADP (ammonium dihydrogen phosphate), Ge (germanium), graphite, In. Sb (indium antimonide), PE (tetrakis-(hydroxymethyl)-methane: penta-erythritol), KAP (potassium hydrogen phthalate), Rb. AP (rubidium hydrogen phthalate) and Tl. AP (thallium(I) hydrogen phthalate). In addition, there is an increasing use of "layered synthetic microstructures", which are "sandwich" structured materials comprising successive thick layers of low atomic number matrix, and monatomic layers of a heavy element. These can in principle be custommanufactured to diffract any desired long wavelength, and are used extensively for elements in the range Li to Mg.