Fundamentals of Musical Acoustics What is sound air

  • Slides: 37
Download presentation
Fundamentals of Musical Acoustics

Fundamentals of Musical Acoustics

What is sound? air pressure time

What is sound? air pressure time

Time something else (air pressure) time ? t=0

Time something else (air pressure) time ? t=0

These variations in air pressure over time can be decomposed into sine waves with

These variations in air pressure over time can be decomposed into sine waves with amplitude and frequency

Peak PE Peak KE Simple Harmonic Motion (Makes sine waves) t

Peak PE Peak KE Simple Harmonic Motion (Makes sine waves) t

Sinusoids y = sin q x = cos q y sin q 1 q

Sinusoids y = sin q x = cos q y sin q 1 q cos q x

a 1 a = sin(t) 3 p p 2 p -1 a = cos(t)

a 1 a = sin(t) 3 p p 2 p -1 a = cos(t) 4 p t

Amplitude A A -A a = A sin(t)

Amplitude A A -A a = A sin(t)

y A sin q A cos q y = A sin q x =

y A sin q A cos q y = A sin q x = A cos q x

Frequency How frequently does the sin/cos complete a whole cycle?

Frequency How frequently does the sin/cos complete a whole cycle?

D C B E A F H G a AB C DE F GH

D C B E A F H G a AB C DE F GH AB C DE F G H A phase f t p/2 90 p radians 3 p/2 2 p 5 p/2 180 270 360/0 90 degrees 3 p 180 t

Frequency 1 cycle / sec. 2 p 2 p / sec. . f cycles

Frequency 1 cycle / sec. 2 p 2 p / sec. . f cycles / sec. f 2 p / sec.

Radian Frequency w = 2 pf f = w/2 p

Radian Frequency w = 2 pf f = w/2 p

y q = 2 pft A q x y = A cos (2 pft)

y q = 2 pft A q x y = A cos (2 pft) x = A cos (2 pft)

a a = A sin(2 pft) t a = A cos(2 pft)

a a = A sin(2 pft) t a = A cos(2 pft)

Period a T t T = period fraction of a second in which one

Period a T t T = period fraction of a second in which one cycle repeats 1 f= T

Phase f a = A sin(2 pft + f)

Phase f a = A sin(2 pft + f)

A 2 p = 1 period T t f -A a = A sin(2

A 2 p = 1 period T t f -A a = A sin(2 pft + f) phase 1 f= T

Two Domains of Description a t a Time Frequency f

Two Domains of Description a t a Time Frequency f

Frequency Domain Representation a A p (Amplitude) f (Phase) f -p freq f a

Frequency Domain Representation a A p (Amplitude) f (Phase) f -p freq f a = A sin (2 pf + f) freq

Frequency Domain What can I hear? IL (d. B) Frequency (Hz) Fletcher & Munson

Frequency Domain What can I hear? IL (d. B) Frequency (Hz) Fletcher & Munson

Modes of Vibration a N N N N = node F 2 F 3

Modes of Vibration a N N N N = node F 2 F 3 F 4 F 5 F f

Joseph Fourier (1768 - 1830) periodic function f(t) = f(t+T) T period A 1

Joseph Fourier (1768 - 1830) periodic function f(t) = f(t+T) T period A 1 Integral multiple harmonics ∞ A 2 A 3 A 6 A 4 A 5 f(t) = A 7 A 8 A 9 A 10 A A 11 12 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F A n sin(2 pn. Ft + fn ) S n=0

Joseph Fourier (1768 - 1830) Harmonic Series F 2 F 3 F 4 F

Joseph Fourier (1768 - 1830) Harmonic Series F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F Fundamental F 2 F 3 F 4 F 5 F 6 F Summation Modes of Vibration

Superposition of Harmonics

Superposition of Harmonics

Ongoing Superposition / Interference constructive Identical Frequencies Different Frequencies 180° out of phase destructive

Ongoing Superposition / Interference constructive Identical Frequencies Different Frequencies 180° out of phase destructive

a partials inharmonic f a 1 1 2 2 3 3 4 4 5

a partials inharmonic f a 1 1 2 2 3 3 4 4 5 5 overtone 6 harmonic F 2 F 3 F 4 F 5 F 6 F f

Resonance a f 0 f p f -p f 0 f behind

Resonance a f 0 f p f -p f 0 f behind

Resonance Input: Amplitude Output: Amplitude Frequency (Hz) Amplitude Time

Resonance Input: Amplitude Output: Amplitude Frequency (Hz) Amplitude Time

a 1. 0. 7071 Df a f 0 Q= Df f f 0 High

a 1. 0. 7071 Df a f 0 Q= Df f f 0 High Q Low Q f 0 f

Input admittance level (10 d. B/div) Frequency (k. Hz) FIG. 10. 14 Input admittance

Input admittance level (10 d. B/div) Frequency (k. Hz) FIG. 10. 14 Input admittance (driving point mobility) of a Guarneri violin driven on the bass bar side (Alonso Moral and Jansson, 1982 b)

Time Domain Real world Sounds

Time Domain Real world Sounds

a temporal envelope attack sustain decay t envelopes a formants spectral envelope cutoff f

a temporal envelope attack sustain decay t envelopes a formants spectral envelope cutoff f

Ongoing Spectral Change Amplitude Pressure Wave

Ongoing Spectral Change Amplitude Pressure Wave

a 3 -D graphs loud soft low high start f stop t

a 3 -D graphs loud soft low high start f stop t

a t Time a Frequency f

a t Time a Frequency f