TARGET HANDOFF MULTISENSORMULTITARGET 2014 2015 UPDATE THEODORE TEATES

  • Slides: 25
Download presentation
TARGET HANDOFF MULTI-SENSOR/MULTI-TARGET 2014 -2015 UPDATE THEODORE TEATES &DR. CHUNG HAO CHEN OLD DOMINION

TARGET HANDOFF MULTI-SENSOR/MULTI-TARGET 2014 -2015 UPDATE THEODORE TEATES &DR. CHUNG HAO CHEN OLD DOMINION UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction • Transition between Julie Hoven and Theodore Teates • Rotation Matrix conversion to

Introduction • Transition between Julie Hoven and Theodore Teates • Rotation Matrix conversion to Quaternions • 4. 2. Problem Formulation using Euler Angles • 4. 3. Problem Formulation using Quaternions • Verification through simulation • 6. 2. 4. 1. Euler Angles • 6. 2. 4. 2. Quaternions • Error analysis • 5. 1. FOV Error • 5. 2. Resolution Error • 5. 2. 1. Sensor Characteristics (i. e. Focal Length, Image Format, Principal Point…) • 5. 2. 2. Sensor Heading • 5. 3. Gimbal Concerns • 5. 3. 1. Gimbal Movement and Minimum Resolution for Accurate Tracking • 5. 3. 2. Minimizing Gimbal Rotation • 5. 3. 3. Counter Detection • 5. 4. Euler Error • 5. 5. Quaternion Error • 5. 6. Error Propagation

Rotation-Trackability Measure

Rotation-Trackability Measure

Euler Rotation Process n Original target point n New target point n Final target

Euler Rotation Process n Original target point n New target point n Final target point n Rotation Matrix

 n Rotation Matrix n Inverse Rotation Matrix

n Rotation Matrix n Inverse Rotation Matrix

 Gimbal Panning/Tilting • Euler angles are not sufficient although directly correlate to sensor

Gimbal Panning/Tilting • Euler angles are not sufficient although directly correlate to sensor position • Gimbal lock proven to jam electronics • Quaternions Required to eliminate possibility of gimbal lock

Quaternion Rotation Process Euler Quaternions n Original target point n New target point n

Quaternion Rotation Process Euler Quaternions n Original target point n New target point n Final target point n Point conversion

Quaternion Rotation Conversion

Quaternion Rotation Conversion

Error Analysis • 5. 1. FOV Error • 5. 2. Resolution Error • 5.

Error Analysis • 5. 1. FOV Error • 5. 2. Resolution Error • 5. 2. 1. Sensor Characteristics (i. e. Focal Length, Image Format, Principal Point…) • 5. 2. 2. Sensor Heading • 5. 3. Gimbal Concerns • 5. 3. 1. Gimbal Movement and Minimum Resolution for Accurate Tracking • 5. 3. 2. Minimizing Gimbal Rotation • 5. 3. 3. Counter Detection • 5. 4. Euler Error • 5. 5. Quaternion Error • 5. 6. Error Propagation

Error Created by Polygonal Approximations

Error Created by Polygonal Approximations

FOV Error (polygonal-circular diff. ) •

FOV Error (polygonal-circular diff. ) •

Resolution Error (polygonal-circular diff. ) •

Resolution Error (polygonal-circular diff. ) •

Resolution Concerns • 5. 2. 1. Sensor Characteristics (i. e. Focal Length, Image Format,

Resolution Concerns • 5. 2. 1. Sensor Characteristics (i. e. Focal Length, Image Format, Principal Point…) • Covered by system error or manufacturing standard • 5. 2. 2. Sensor Heading • Relative velocity between target and platform sensor. • Covered by platforms ability to monitor own position, system error and target position error.

Euler Error

Euler Error

Quaternion Error

Quaternion Error

Error Propagation

Error Propagation

Error Propagation (example)

Error Propagation (example)

Gimbal Concerns • 5. 3. 1. Gimbal Movement and Minimum Resolution for Accurate Tracking

Gimbal Concerns • 5. 3. 1. Gimbal Movement and Minimum Resolution for Accurate Tracking

Gimbal Concerns • 5. 3. 1. Gimbal Movement and Minimum Resolution for Accurate Tracking

Gimbal Concerns • 5. 3. 1. Gimbal Movement and Minimum Resolution for Accurate Tracking

Gimbal Concerns • 5. 3. 2. Minimizing Gimbal Rotation • prolong the life of

Gimbal Concerns • 5. 3. 2. Minimizing Gimbal Rotation • prolong the life of the equipment • lower power consumption • Use the current FOV structure and move the gimbal when approaching the inner gimbal cone • This would maintain a target moving at a reasonable velocity and distance but would require the gimbal to constantly move if the gimbal only moved • Gimbal control programed to continue moving the gimbal on a FOV gimbal trigger until the target is in the center of the FOV • allow for the possibility of an instantaneous target trajectory change • require less gimbal movement than only panning during a trigger event. • Gimbal control programed to continue moving the gimbal on a FOV gimbal trigger until the target is at a point on the far side of the FOV corresponding to the trending average velocity of the target • run into trouble if the target changes trajectory in the opposite direction unexpectedly • 5. 3. 3. Counter Detection • Target trending

Questions? • Dr. Chung-Hao Chen cxchen@odu. edu 757 -683 -3475 • Theodore Teates tteat

Questions? • Dr. Chung-Hao Chen cxchen@odu. edu 757 -683 -3475 • Theodore Teates tteat 001@odu. edu