Proving Analytic Inequalities Avi Wigderson IAS Princeton Math

  • Slides: 25
Download presentation
Proving Analytic Inequalities Avi Wigderson IAS, Princeton Math and Computation New book on my

Proving Analytic Inequalities Avi Wigderson IAS, Princeton Math and Computation New book on my website

Past 2 lectures Alternate minimization & Symbolic matrices: analytic algorithms for algebraic problems. Polynomial

Past 2 lectures Alternate minimization & Symbolic matrices: analytic algorithms for algebraic problems. Polynomial identities: algebraic tools for understanding analytic algorithms. Today Applications: Analysis & Optimization

Ubiquity of matrix tuples [GGOW’ 15’ 16] Computational Complexity (A 1, A 2, …,

Ubiquity of matrix tuples [GGOW’ 15’ 16] Computational Complexity (A 1, A 2, …, Am): symbolic matrix i. Aixi Quantum Information Theory (A 1, A 2, …, Am): completely positive operator Non-commutative Algebra In P (A 1, A 2, …, Am): rational expression In P (A 1, A 2, …, Am): orbit under Left-Right action In P (A 1, A 2, …, Am): projectors in Brascamp-Lieb inequalities In P (A 1, A 2, …, Am): exp size linear programs In P Invariant Theory Analysis Optimization

Brascamp-Lieb Inequalities [BL’ 76, Lieb’ 90] ∫ ∏j fj ≤ C ∏j |fj|pj Propaganda:

Brascamp-Lieb Inequalities [BL’ 76, Lieb’ 90] ∫ ∏j fj ≤ C ∏j |fj|pj Propaganda: special cases & extensions Cauchy-Schwarz, Holder Loomis-Whitney Young’s convolution Lieb’s Non-commutative BL Bennett-Bez Nonlinear BL Precopa-Leindler Nelson Hypercontractive Brunn-Minkowski Barthe Reverse BL Quantitative Helly Analysis, Geometry, Probability, Information Theory, …

Brascamp-Lieb Inequalities [BL’ 76, Lieb’ 90] Input B = (B 1, B 2, …,

Brascamp-Lieb Inequalities [BL’ 76, Lieb’ 90] Input B = (B 1, B 2, …, Bm) Bj: Rn Rnj (BL data) p = (p 1, p 2, …, pm) pj ≥ 0 ∫x Rn linear ∏j fj(Bj(x)) ≤ C ∏j |fj|pj ( fj: Rnj R+ integrable ) f = (f 1, f 2, …, fm) [Garg-Gurvits-Oliveira-W’ 16] Feasibility & Optimal C in P (through Operator Scaling & Alternate Minimization) Optimization: solving (some) exponential size LPs

Plan - Examples - General statement - Structural theory - Algorithm - Consequences: Structure

Plan - Examples - General statement - Structural theory - Algorithm - Consequences: Structure Optimization (? ) Notation f: Rd R+ |f|1/p = (∫x Rd f(x)1/p)p

Examples

Examples

Cauchy-Schwarz, Holder d=1 f 1, f 2: R R+ [CS] ∫x R f 1(x)f

Cauchy-Schwarz, Holder d=1 f 1, f 2: R R+ [CS] ∫x R f 1(x)f 2(x) ≤ |f 1|2|f 2|2 p 1=p 2=1/2 any other norms? [H] ∫x R f 1(x)f 2(x) ≤ |f 1|1/p 1|f 2|1/p 2 p 1+p 2=1 pi≥ 0

Loomis-Whitney I d=2, x=(x 1, x 2) f 1, f 2: R R+ [Trivial]

Loomis-Whitney I d=2, x=(x 1, x 2) f 1, f 2: R R+ [Trivial] ∫x R 2 f 1(x 1)f 2(x 2) = |f 1|1|f 2|1 p 1=p 2=1 x 2 a 2 A a 1 x 1 area(A) ≤len(a 1)len(a 2) H(Z 1 Z 2) ≤ H(Z 1)+H(Z 2)

Loomis-Whitney II d=3, x=(x 1, x 2, x 3) f 1, f 2, f

Loomis-Whitney II d=3, x=(x 1, x 2, x 3) f 1, f 2, f 3: R 2 R+ [LW] ∫x R 3 f 1(x 2 x 3)f 2(x 1 x 3)f 3(x 1 x 2) ≤ |f 1|2|f 2|2|f 3|2 pi=½ x 2 A 23 x 3 A 12 any other norms? x 1 S A 13 H(Z 1 Z 2 Z 2) ≤ ½[H(Z 1 Z 2)+H(Z 2 Z 3)+H(Z 1 Z 3)] vol(S) ≤ [area(A 12)area(A 13)area(A 23)]1/2

Young I d=2, x=(x 1, x 2) [Young] x 1+x 2 ∫x R 2

Young I d=2, x=(x 1, x 2) [Young] x 1+x 2 ∫x R 2 f 1(x 1)f 2(x 2)f 3(x 1+2) ≤ (√ 3)/2 |f 1|3/2|f 2|3/2|f 3|3/2 pi=2/3 Any other norms? a 3 a 2 f 1, f 2, f 3: R R+ A a 1 area(A) ≤ (√ 3)/2 [len(a 1)len(a 2)len(a 3)]2/3 x 1

Young II d=2, x=(x 1, x 2) [Young] f 1, f 2, f 3:

Young II d=2, x=(x 1, x 2) [Young] f 1, f 2, f 3: R 2 R+ ∫x R 2 f 1(x 1)f 2(x 2)f 3(x 1+2) ≤ C |f 1|1/p 1|f 2|1/p 2|f 3|1/p 3 p 1+p 2+p 3=2 1≥pi≥ 0 C = q 1 q 1 q 2 q 2 q 3 q 3 p 1 p 1 p 2 p 2 p 3 p 3 qi=1 -pi

Brascamp-Lieb Inequalities [BL’ 76, Lieb’ 90] Input B = (B 1, B 2, …,

Brascamp-Lieb Inequalities [BL’ 76, Lieb’ 90] Input B = (B 1, B 2, …, Bm) Bj: Rn Rnj (BL data) p = (p 1, p 2, …, pm) pj ≥ 0 ∫x Rn ∏j fj(Bj(x)) ≤ C ∏j |fj|1/pj f = (f 1, f 2, …, fm) ( fj: Rnj R+ integrable ) Given BL data (B, p): Is there a finite C? What is the smallest C? [ BL(B, p) ] [GGOW’ 16] Feasibility & Optimal C in P

Structure (look for similarities to lecture 1)

Structure (look for similarities to lecture 1)

Feasibility: C<∞ [Bennett-Carbery-Christ-Tao’ 08] Input B = (B 1, B 2, …, Bm) Bj:

Feasibility: C<∞ [Bennett-Carbery-Christ-Tao’ 08] Input B = (B 1, B 2, …, Bm) Bj: Rn Rnj (BL data) p = (p 1, p 2, …, pm) pj ≥ 0 ∫x Rn ∏j fj(Bj(x)) ≤ C ∏j |fj|1/pj [BCCT’ 08] C<∞ iff p PB P B: fi (the Polytope of B) ∑j p j n j = n ∑j pj dim(Bj. V) ≥ dim(V) subspace V in Rm pj ≥ 0 (Exponentially many inequalities) Rank nondecreasing

BL-constant [Lieb’ 90] Input B = (B 1, B 2, …, Bm) Bj: Rn

BL-constant [Lieb’ 90] Input B = (B 1, B 2, …, Bm) Bj: Rn Rnj (BL data) p = (p 1, p 2, …, pm) pj ≥ 0 ∫x Rn ∏j fj(Bj(x)) ≤ C ∏j |fj|1/pj fi [Lieb’ 90] BL(B, p) is optimized when fj are Gaussian 1/cap(L) = BL(B, p)2 = sup ∏j det(Aj)pj Nonconvex Aj>0 det(∑j pj Bjt. Aj. Bj) for some completely positive operator L (B, p) B 1 B 2 Quiver B 3 reduction A 1 A 2 A 3 A 4

Algorithms

Algorithms

Geometric BL [Ball’ 89, Barthe’ 98] Input B = (B 1, B 2, …,

Geometric BL [Ball’ 89, Barthe’ 98] Input B = (B 1, B 2, …, Bm) Bj: Rn Rnj (BL data) p = (p 1, p 2, …, pm) pj ≥ 0 ∫x Rn ∏j fj(Bj(x)) ≤ C ∏j |fj|1/pj fi [B’ 89] (B, p) is geometric if (Projection) B jt = I n j (Isotropy) ∑j p j B j t B j = I n j [B’ 89] (B, p) geometric BL(B, p)=1 Doublystochastic

Alternate Minimization [GGOW’ 16] [B’ 89] (B, p) is geometric if (1) Bj. Bjt

Alternate Minimization [GGOW’ 16] [B’ 89] (B, p) is geometric if (1) Bj. Bjt = Inj (2) ∑j pj Bjt. Bj = In j [Projection property] [Isotropy property] On input (B, p): attempt to make it geometric Repeat t=nc times: - Satisfy Projection (Right basis change) - Satisfy Isotropy (Left basis change) Converges quickly iff (B, p) is feasible [GGOW’ 16] - Feasibility (testing C<∞, p PB) in polynomial time - Weak separation oracle - Feasible (B, p) converges to geometric in polytime - Keeping track of changes approximates BL(B, p) - Structure: bounds & continuity of BL(B, p), LP bounds.

Optimization

Optimization

Linear programming & Polytopes e 3 P = conv {0, e 1, e 2,

Linear programming & Polytopes e 3 P = conv {0, e 1, e 2, … em} Rm e 2 = { p Rm: ∑j pj ≤ 1 pj ≥ 0 j [m] } 0 Membership Problem: Test if p P? e 1 Easy if P has few inequalities, in a large variety of settings with many inequalities, and when… [GGOW’ 16] P is a BL-polytope! B = (B 1, B 2, …, Bm) Bj: Rn Rnj PB: { p Rm: ∑j pj nj = n ∑j pj dim(Bj. V) ≥ dim(V) V ≤ Rn pj ≥ 0 ? ? Applications? ?

Optimization: linear programs with exponentially many inequalities BL polytopes capture Matroids M = {v

Optimization: linear programs with exponentially many inequalities BL polytopes capture Matroids M = {v 1, v 2, …… vm} vj Rn Exponentially many Inequalities VJ = {vj : j J} PM = conv {1 J: VJ is a basis} Rm = { p Rm: ∑j�J pj ≤ dim(VJ) J [m] pj ≥ 0 Bj: Rn R Bjx=<vj, x> [Fact] PB = PM j [m] } j [m]

Optimization: linear programs with exponentially many inequalities BL polytopes capture Matroid Intersection M =

Optimization: linear programs with exponentially many inequalities BL polytopes capture Matroid Intersection M = {v 1, v 2, …… vm} vj Rn N = {u 1, u 2, …… um} uj Rn PM, N = conv {1 J: VJ, UJ are bases} Rm [Edmonds] = {p Rm: ∑j pj ≤ dim(VJ) J [m] ∑j pj ≤ dim(UJ) J [m] pj ≥ 0 Bj: R 2 n R 2 Bjx=<vj, x. L>, <uj, x. R> [Vishnoi] PB = PM, N j [m] } j [m]

Optimization: linear programs with exponentially many inequalities General matching as BL polytopes? ? G

Optimization: linear programs with exponentially many inequalities General matching as BL polytopes? ? G = (V, E) |V|=2 n, |E|=m PG = conv {1 S: S E perfect matching} Rm [Edmonds] = {p Rm: ∑ij E pij =n ∑ i S j S pij ≥ 1 S V odd pij ≥ 0 ij E } Is this a BL-polytope? Other nontrivial examples? Optimization?

Summary One problem : Singularity of Symbolic Matrices One algorithm: Alternating minimization Non-commutative Algebra:

Summary One problem : Singularity of Symbolic Matrices One algorithm: Alternating minimization Non-commutative Algebra: Word problem Invariant Theory: Nullcone & orbit problems Quantum Information Theory: Positive operators Analysis: Brascamp-Lieb inequalities Optimization Exponentially large linear programs Computational complexity VP=VNP? Tools, applications, structure, connections, … Optimization, Complexity & Invariant Theory IAS workshop, June 4 -8, 2018