Gesellschaft fr Schwerionenforschung HelmholtzCenter for Ion Research Employees

  • Slides: 18
Download presentation
Gesellschaft für Schwerionenforschung Helmholtz-Center for Ion Research Employees: 1350 + external sceintists: 1000 Base

Gesellschaft für Schwerionenforschung Helmholtz-Center for Ion Research Employees: 1350 + external sceintists: 1000 Base budget: 120 M€ + external budget Large scale facility of ion acceleratrors + laser and further facilities th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

GSI Heavy Ion Research Center German national heavy ion accelerator facility in Darmstadt Accelerators:

GSI Heavy Ion Research Center German national heavy ion accelerator facility in Darmstadt Accelerators: Acceleration of all ions LINAC: up to 15 Me. V/u Synchrotron: up to 2 Ge. V/u Research area: Ø Nuclear physics 60 % Ø Atomic physics 20 % Ø Bio physics (e. g. cell damage) incl. cancer therapy 5 % Ø Material research 10 % Extension by international FAIR facility GSI is one of 18 German large scale research centers. th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for 2 p-physics at the future GSI facilities 19 of March, 2018

The Accelerator Facility at GSI The GSI linear accelerator, synchrotron & storage ring for

The Accelerator Facility at GSI The GSI linear accelerator, synchrotron & storage ring for heavy ions Ion Sources: all elements LINAC UNI LAC Synchrotron, Bρ=18 Tm Emax p: 4. 7 Ge. V U: 1 Ge. V/u Achieved e. g. : SIS Ar 18+: 1· 1011 U 28+: 3· 1010 FRS U 73+: 1· 1010 ESR LINAC: all ions p – U : 3 – 12 Me. V/u, 50 Hz, max. 5 ms Up to 20 m. A current ESR: Storage Ring, Bρ=10 Tm Atomic & Plasma Physics Radiotherapy Nuclear Physics th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for 3 p-physics at the future GSI facilities 19 of March, 2018

Excurse: UNILAC at GSI: Overview RFQ, IH 1, IH 2 Alvarez DTL Single Gap

Excurse: UNILAC at GSI: Overview RFQ, IH 1, IH 2 Alvarez DTL Single Gap Resonators Transfer to Synchrotron MEVVA MUCIS PIG RFQ 2. 2 ke. V/u β = 0. 0022 HLI: (ECR, RFQ, IH) To SIS ↑ All ions, high current, 5 ms@50 Hz, 36&108 MHz frf = 108 MHz Alvarez DTL frf = 36 MHz IH 1 IH 2 4+ U U 28+ Gas Stripper 1. 4 Me. V/u β = 0. 054 120 ke. V/u β = 0. 016 Foil Stripper 11. 4 Me. V/u β = 0. 16 10 mm Constructed in the 70 th, Upgrade 1999, Injector for FAIR ion operation th Peter Forck, Hollow E-Lens Monitor Meeting 4 L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

Das Periodensystem der Elemente 101 I H 1 Li 3 natural, artificial, at GSI

Das Periodensystem der Elemente 101 I H 1 Li 3 natural, artificial, at GSI produced for first time, stable unstable unstabil II IV at GSI confirmed, Be unstable 4 5 Na 12 Mg K 13 Ca 21 Sc Ti 20 Rb 38 Sr 37 22 Y 39 Cs 56 Ba 57 La 58 -71 Fr 90 -103 Ra 89 Ac 88 V 23 C 6 Si 14 7 N 15 P VI VII 2 He 8 O 16 S 9 F Ne 10 Cl 18 Ar 17 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Hf 73 Ta 82 72 V 24 40 55 87 B Al 11 19 VIII W 75 Re 76 Os 74 Ir 77 Pt 79 Au 80 Hg 81 Tl 78 Sn 51 Sb 52 Te Pb 83 Bi 53 I Xe 54 Po 85 At 86 Rn 84 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og 105 106 107 108 109 110 111 112 117 114 116 113 115 118 104 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 58 Th 91 Pa 90 Bh 107 Bohrium Hs 108 Hassium Mt 109 U 92 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es Fm Md No Lr 100 93 102 Meitnerium Ds Darmstadtium 110 Rg 111 103 Roentgenium Cn Copernicium 112 th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

Nuklidkarte: Superschwere Ionen Ion filter SHIP Neutronenzahl N → Only 3 ‘super-heavies’ with 6

Nuklidkarte: Superschwere Ionen Ion filter SHIP Neutronenzahl N → Only 3 ‘super-heavies’ with 6 week beam time th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

The Accelerator Facility at GSI The GSI linear accelerator, synchrotron & storage ring for

The Accelerator Facility at GSI The GSI linear accelerator, synchrotron & storage ring for heavy ions Ion Sources: all elements LINAC UNI LAC Synchrotron, Bρ=18 Tm Emax p: 4. 7 Ge. V U: 1 Ge. V/u Achieved e. g. : SIS Ar 18+: 1· 1011 U 28+: 3· 1010 FRS U 73+: 1· 1010 ESR LINAC: all ions p – U : 3 – 12 Me. V/u, 50 Hz, max. 5 ms Up to 20 m. A current ESR: Storage Ring, Bρ=10 Tm Atomic & Plasma Physics Radiotherapy Nuclear Physics th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for 7 p-physics at the future GSI facilities 19 of March, 2018

GSI Heavy Ion Synchrotron rf cavity, quadrupoles, dipoles acceleration Important parameters of SIS-18 Important

GSI Heavy Ion Synchrotron rf cavity, quadrupoles, dipoles acceleration Important parameters of SIS-18 Important parameters Circumference 216 m of Ion (Z) 1 → 92 (p to U) Inj. type Multiturn Energy range Inj. type 11 Multiturn Me. V → 2 Ge. V Injection Acc. RF energy 11→ Me. V/u 0. 8 5 MHz Circumference injection SIS-18 Max. final energy 216 m 2 Ge. V/u Harmonic Ramp duration 4 (= 0. 1 # → bunches) 1. 5 s Acc. RF Bunching factor 0. 8 5 MHz 0. 4 →→ 0. 08 Harmonic 4 (= # bunches) Ramp duration 0. 06 → 1. 5 s Ion range (Z) Beam current 1→ (p 100 to U) 10 92 µA to m. A Bunching factor extraction Dipole, quadrupoles, transfer line 0. 4 → 0. 08 commissioning 1991 th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for 8 p-physics at the future GSI facilities 19 of March, 2018

Detektors form barionic Matter HADES Detector Reconstruktion of traces th Peter Forck, Hollow E-Lens

Detektors form barionic Matter HADES Detector Reconstruktion of traces th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

Ion Treatment of Tumors healthy tissue tumor Biological effectness 100 % hard x-rays 50

Ion Treatment of Tumors healthy tissue tumor Biological effectness 100 % hard x-rays 50 % Ion beaml 0% 2 6 10 14 18 penetration depth [cm] th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

Ion Treatment of Tumors Raster scan method for focused beams ca. 1975 - today:

Ion Treatment of Tumors Raster scan method for focused beams ca. 1975 - today: Investigation of biological damage of ion beams ca. 1990 -97: technical realization for cancer therapy (first time in Europe) 1997 -2007: treatment of 440 persons with brain tumors ca. 2000 -09: Construction of dedicated facility in Heidelberg (first ion center in Europe) 2009 - today: Treatment of about 800 patients per year th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

Accelerator Technology for Patient Treatment Ion beam Monitorsystem PET-camera 1 2 3 Head Patient

Accelerator Technology for Patient Treatment Ion beam Monitorsystem PET-camera 1 2 3 Head Patient 1 m 3 2 1 th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

The Accelerator Facility at GSI The GSI linear accelerator, synchrotron & storage ring for

The Accelerator Facility at GSI The GSI linear accelerator, synchrotron & storage ring for heavy ions Ion Sources: all elements LINAC UNI LAC Synchrotron, Bρ=18 Tm Emax p: 4. 7 Ge. V U: 1 Ge. V/u Achieved e. g. : SIS Ar 18+: 1· 1011 U 28+: 3· 1010 FRS U 73+: 1· 1010 ESR LINAC: all ions p – U : 3 – 12 Me. V/u, 50 Hz, max. 5 ms Up to 20 m. A current ESR: Storage Ring, Bρ=10 Tm Atomic & Plasma Physics Radiotherapy Nuclear Physics th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for 13 p-physics at the future GSI facilities 19 of March, 2018

Electron Cooling at ESR: Improvement of Beam Quality Electron cooling: Superposition and cold electron

Electron Cooling at ESR: Improvement of Beam Quality Electron cooling: Superposition and cold electron beams with the same velocity e. g. : 220 ke. V electrons cool 400 Me. V/u ions Example: Electron cooler at GSI, Umax = 300 k. V electron temperature k. BT 0. 1 e. V k. BT║ 0. 1 - 1 me. V Physics: Ø Momentum transfer by Coulomb collisions Ø Cooling force results from energy loss in the cold, co-moving electron beam Cooling time: 0. 1 s for low energy highly charged ions, 1000 s for high energy protons th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

Pillbox Cavity for vey low Detection Threshold Observation of single ions is possible: Example:

Pillbox Cavity for vey low Detection Threshold Observation of single ions is possible: Example: Storage of six 142 Pm 59+ at 400 Me. V/u during electron cooling 100 mm beam 600 beam CF 250 ceramic gap Advantage: Ø Sensitive down to single ion observation Ø Part of cavity in air due to ceramic gap Ø Can be sort-circuited to prevent for wake-field excitation 600 mm Outer out 600 mm Beam pipe in 250 mm Mode (monopole) TM 010 Res. freq. fres Variable by plunger 244 MHz 2 MHz Quality factor Q 0 1200 Loaded Ql 500 R/Q 0 30 Coupling Inductive loop th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

Example of Schottky Mass Spectroscopy for Nuclear Physics Typical experimental setup: Ø High intensity

Example of Schottky Mass Spectroscopy for Nuclear Physics Typical experimental setup: Ø High intensity beam of e. g. U 73+ in synchrotron 1 Ge. V/u and send to a target Ø Cocktail of rare isotopes filtered in ‘Fragment Separator’ injected into GSI ESR Ø Stochastic pre-cooling , followed by electron cooling: p/p 0 = 5 10 -7 f/f 0 = 2 10 -7 typ. Þ mass measurement of isotopes an excited states as a large experimental program Þ single isotope detection possible Example: Broad band spectrum Example: High resolution spectrum T. Radon et al. , Phys. Rev Lett 78, 4701 (1997), M. Hausmann et al. , NIM A 446, p. 569 (2000), B. Sun et al. , Nucl. Phys. A 834, 473 (2010) th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for p-physics at the future GSI facilities 19 of March, 2018

GSI and FAIR in Future GSI accelerator: all ions high intensity for 1 Ge.

GSI and FAIR in Future GSI accelerator: all ions high intensity for 1 Ge. V/u production of rare isotopes beam cooling (electron, stochastic, laser) FAIR: extension of program + antiprotons GSI FAIR Main physics activities at FAIR: ØNuclear Structure with in-flight Rare Isotope Beams ØHadron Physics at 30 Ge. V/u heavy ions ØHadron Physics with antiprotons up to 14 Ge. V ØAtomic Physics with RIBs and antiprotons ØPlasma, Biophysics and Material Science th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for 17 p-physics at the future GSI facilities 19 of March, 2018

GSI and FAIR in Future UNILAC & SIS 18: as injector for ions after

GSI and FAIR in Future UNILAC & SIS 18: as injector for ions after upgrade p-LINAC: high current 70 m. A, 70 Me. V SIS 100: 100 Tm, s-c magnets 2 T 1 -10 Ge. V/u fast ramping 3 T/s length 1084 m design: p 4*1013, U 28+ 5*1011 critical issue: dynamic vacuum CR: stochastic cooling of RIB and pbar HESR: acc. of pbar to max. 14 Ge. V, pellet target, stochastic & e-cooling HEBT: fast & slow extraction for low & high currents. th Peter Forck, Hollow E-Lens Monitor Meeting L. Groening, Sept. GSI-Palaver, Dec. 15 th, 10 th, 2003, A dedicated proton accelerator for 18 p-physics at the future GSI facilities 19 of March, 2018