5 2 Definite Integrals Greg Kelly Hanford High

  • Slides: 19
Download presentation
5. 2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington

5. 2 Definite Integrals Greg Kelly, Hanford High School, Richland, Washington

When we find the area under a curve by adding rectangles, the answer is

When we find the area under a curve by adding rectangles, the answer is called a Rieman sum. The width of a rectangle is called a subinterval The entire interval is called the partition Subintervals do not all have to be the same size.

If the partition is denoted by P, then the length of the longest subinterval

If the partition is denoted by P, then the length of the longest subinterval is called the norm of P and is denoted by. subinterval partition As gets smaller, the approximation for the area gets better. if P is a partition of the interval

is called the definite integral of over . If we use subintervals of equal

is called the definite integral of over . If we use subintervals of equal length, then the length of a subinterval is: The definite integral is then given by:

Leibnitz introduced a simpler notation for the definite integral: Note that the very small

Leibnitz introduced a simpler notation for the definite integral: Note that the very small change in x becomes dx.

upper limit of integration Integration Symbol integrand lower limit of integration variable of integration

upper limit of integration Integration Symbol integrand lower limit of integration variable of integration (dummy variable) It is called a dummy variable because the answer does not depend on the variable chosen.

We have the notation for integration, but we still need to learn how to

We have the notation for integration, but we still need to learn how to evaluate the integral.

In section 5. 1, we considered an object moving at a constant rate of

In section 5. 1, we considered an object moving at a constant rate of 3 ft/sec. Since rate. time = distance: If we draw a graph of the velocity, the distance that the object travels is equal to the area under the line. After 4 seconds, the object has gone 12 feet. velocity time

If the velocity varies: Distance: (C=0 since s=0 at t=0) After 4 seconds: The

If the velocity varies: Distance: (C=0 since s=0 at t=0) After 4 seconds: The distance is still equal to the area under the curve! Notice that the area is a trapezoid.

What if: We could split the area under the curve into a lot of

What if: We could split the area under the curve into a lot of thin trapezoids, and each trapezoid would behave like the large one in the previous example. It seems reasonable that the distance will equal the area under the curve.

The area under the curve We can use anti-derivatives to find the area under

The area under the curve We can use anti-derivatives to find the area under a curve!

Let’s look at it another way: Let area under the curve from a to

Let’s look at it another way: Let area under the curve from a to x. (“a” is a constant) Then:

min f max f h The area of a rectangle drawn under the curve

min f max f h The area of a rectangle drawn under the curve would be less than the actual area under the curve. The area of a rectangle drawn above the curve would be more than the actual area under the curve.

As h gets smaller, min f and max f get closer together. This is

As h gets smaller, min f and max f get closer together. This is the definition of derivative! initial value Take the anti-derivative of both sides to find an explicit formula for area.

As h gets smaller, min f and max f get closer together. Area under

As h gets smaller, min f and max f get closer together. Area under curve from a to x = antiderivative at x minus antiderivative at a.

Area

Area

Example: Find the area under the curve from x=1 to x=2. Area from Areax=from

Example: Find the area under the curve from x=1 to x=2. Area from Areax=from Area under thex=0 curve from 1 to x=0 x=2. to x=2 to x=1

Example: Find the area under the curve from x=1 to x=2. To do the

Example: Find the area under the curve from x=1 to x=2. To do the same problem on the TI-89: ENTER 2 nd 7

Example: Find the area between the x-axis and the curve from to . pos.

Example: Find the area between the x-axis and the curve from to . pos. neg. On the TI-89: If you use the absolute value function, you don’t need to find the roots. p