Thin Film Optics Physics of thin film optics

  • Slides: 28
Download presentation
Thin Film Optics • Physics of thin film optics • Important spectral features •

Thin Film Optics • Physics of thin film optics • Important spectral features • Ba. Cu. SF data

Optics basics k wave vector n = index of refraction a = absorption coefficient

Optics basics k wave vector n = index of refraction a = absorption coefficient k = extinction coefficient e = dielectric constant

Bulk sample d Absorption Real sample with surfaces

Bulk sample d Absorption Real sample with surfaces

Thin Film on substrate r 1 n 1=n n 2=s d t 1 r

Thin Film on substrate r 1 n 1=n n 2=s d t 1 r 2 t 2 r 3 t 3 • polarization • angle

Surface reflection and transmission

Surface reflection and transmission

R & T for real sample(no fringes) surface coeffs multiple bounces

R & T for real sample(no fringes) surface coeffs multiple bounces

R & T for real sample(w/ fringes)

R & T for real sample(w/ fringes)

Deduce Abs Coeff from R & T Transmission normalized to what it “should” have

Deduce Abs Coeff from R & T Transmission normalized to what it “should” have been

Thin Film Interference Fringes n=2. 5, s=1. 5, d=0. 4µm m=2 m=1 Transmission Reflection

Thin Film Interference Fringes n=2. 5, s=1. 5, d=0. 4µm m=2 m=1 Transmission Reflection

Thin Film Interference Fringes n=2. 5, s=1. 5, d=1µm m=7 m=6

Thin Film Interference Fringes n=2. 5, s=1. 5, d=1µm m=7 m=6

Dispersion tightens up fringes n=2. 6+, s=1. 51, d=1µm

Dispersion tightens up fringes n=2. 6+, s=1. 51, d=1µm

Absorption cuts transmission n=2. 6+, s=1. 51, d=1µm, absorption (blue)

Absorption cuts transmission n=2. 6+, s=1. 51, d=1µm, absorption (blue)

Index, absorption model (amorph Si)

Index, absorption model (amorph Si)

Fringes vs angle

Fringes vs angle

Effect of ignoring last surface n=2. 6+, s=1. 51, d=1µm, absorption (blue) red=no substrate,

Effect of ignoring last surface n=2. 6+, s=1. 51, d=1µm, absorption (blue) red=no substrate, black = w/ substrate

Analysis to find absorption n =2. 6+, s=1. 51, d=1µm blue=abs, red = R+T,

Analysis to find absorption n =2. 6+, s=1. 51, d=1µm blue=abs, red = R+T, black=T/(1 -R)

Determine abs n dispersive, s=1. 51, d=1µm blue=abs, black = T/(1 -R), red=expt abs

Determine abs n dispersive, s=1. 51, d=1µm blue=abs, black = T/(1 -R), red=expt abs

Average transmission fringes n dispersive, s=1. 51, d=1µm

Average transmission fringes n dispersive, s=1. 51, d=1µm

Average reflection fringes n dispersive, s=1. 51, d=1µm

Average reflection fringes n dispersive, s=1. 51, d=1µm

Grating Spectrometer

Grating Spectrometer

Ba. Cu. SF Transmission

Ba. Cu. SF Transmission

Ba. Cu. SF Gap analysis

Ba. Cu. SF Gap analysis

Ba. Cu. SF Gap analysis

Ba. Cu. SF Gap analysis

Ba. Cu. SF R, T Spectra

Ba. Cu. SF R, T Spectra

Ba. Cu. SF Index

Ba. Cu. SF Index

Ba. Cu. SF Reflection (th vs expt)

Ba. Cu. SF Reflection (th vs expt)

Ba. Cu. SF Transmission (th vs expt)

Ba. Cu. SF Transmission (th vs expt)