RHICf physics introduction UHECR interaction Yoshitaka Itow KMISTEL

  • Slides: 31
Download presentation
RHICf physics introduction - UHECR interaction Yoshitaka Itow (KMI/STEL, Nagoya University) RHICf collaboration open

RHICf physics introduction - UHECR interaction Yoshitaka Itow (KMI/STEL, Nagoya University) RHICf collaboration open meeting BNL , Jun 13, 2016 2014/06/12 RHIC PAC meeting 1

Motivation : cosmic ray interactions Air shower HEAT TALE Tibet. AS HAWC Knee 0.

Motivation : cosmic ray interactions Air shower HEAT TALE Tibet. AS HAWC Knee 0. 2 0. 5 Cosmic rays 1014 0. 9 2. 2 AUGER, TA 2 nd Knee? 7 14 Te. V 1017 Ankle GZK Colliders 1020 e. V l Need dedicated very forward measurement at hadron c l So far LHCf measured pp (7, 2. 76, 0. 9 Te. V) and p-Pb(5 l RHIC data at the low end is important for extrapolation l RHIC can serve p-LI or LI-LI collisions ( LI: light ion, ex 2

① Inelastic cross section (TOTEM and others) ③ Inelasticity k= 1 -plead/pbeam (LHCf forward

① Inelastic cross section (TOTEM and others) ③ Inelasticity k= 1 -plead/pbeam (LHCf forward neutron, n / g ratio ) ④ Nuclear effect (shadowing, Cronin effect) Composition error #of particles ⑤ 2 ndary interactions (√s dependence ) ② Forward energy spectrum ( LHCf g /p 0 spectrum) Atm. depth SD E-scale error 3

UHECR interaction; Impact on chemical composition • • UHECR MC (EPOS, QGSJET II) tuned

UHECR interaction; Impact on chemical composition • • UHECR MC (EPOS, QGSJET II) tuned by LHC data now Shower max diff. improved ( 50 -> 20 gcm 2 ), c. f. 100 gcm 2 btw p - Fe Question is energy extrapolation from 1017 to 1020 e. V Do we understand even 1014 to 1017 e. V ? EPOS QGSJET- 0 g/cm 2 Xmax T. Pierog, S. Ostapchenko, ISVHECRI 2012 1017 1020 4

Figure by T. Pierog 2 ndary particle productions proton String fragmentation q h q

Figure by T. Pierog 2 ndary particle productions proton String fragmentation q h q LHCf Very forward central Projectile diffraction LHCf sees 5

The LHCf experiment LHCf Arm#1 Two independent detectors at either side of IP 1

The LHCf experiment LHCf Arm#1 Two independent detectors at either side of IP 1 (Arm#1, Arm#2 ) 140 m Beam pipe Charged particles (+) Beam 96 mm ATLAS Neutral particles LHCf Arm#2 Charged particles (-) • • All charged particles are swept by dipole magnet Neutral particles (photons and neutrons) arrive at LHCf 0 degree is covered ( 8. 6 < | h | < infinity ) Carried out at LHC 0. 9, 2. 76, 7, and 13 Te. V p+p and 5 Te. V p+Pb 6

The LHCf detectors Here we assume to use Arm 1 Arm 2 44 X

The LHCf detectors Here we assume to use Arm 1 Arm 2 44 X 0, 1. 6 lint 16 tungsten + pl. scinti. layers 25 mmx 25 mm+32 mmx 32 mm 4 Silicon strip tracking layers 16 tungsten + pl. scinti. layers 20 mmx 20 mm+40 mmx 40 mm 4 Sci. Fi tracking layers 7

PID (SPS energy) EM shower (SPS) Hadronic shower (LHC MC) JINST, 9, P 03016

PID (SPS energy) EM shower (SPS) Hadronic shower (LHC MC) JINST, 9, P 03016 (2014) energy resolution (%) NIM, A 671 (2012) 129 -136 JINST, 5, P 01012, 2010 position resolution (mm) position resolution (μm) p 0 mass 8

h>10. 94 7 & 0. 9 Te. V pp photon PLB 703 (2011) 128

h>10. 94 7 & 0. 9 Te. V pp photon PLB 703 (2011) 128 -134 PLB 715 (2012) 298 -303 h> 10. 76 7 Te. V pp neutron Submitted PLB LHCf results summary 7 Te. V pp p 0 PRD 86 (2012) 092001 5 Te. V p. Pb p 0 PRC 89 (2014) 065209 ary n i im l e r P

Feynman scaling : a key for extrapolation • Many models naturally include XF scaling

Feynman scaling : a key for extrapolation • Many models naturally include XF scaling violation • Important to extrapolate from LHC to GZK • Impact also on air shower structure; Xmax LHC single gamma data (900 Ge. V pp / 7 Te. V pp) p 0 Xf ’s from models (7 Te. V and 100 Te. V ratio to 0. 9 Te. V) Data Preliminary 0. 9 Te. V (h>8. 68) 7 Te. V scaled (h>10. 94) 10

Feynman scaling in p 0 production preliminary • LHCf π0 spectra at √s= 2.

Feynman scaling in p 0 production preliminary • LHCf π0 spectra at √s= 2. 76 and 7 Te. V (preliminary) • RHICf can add data at √s=510 Ge. V, p. T<1 Ge. V/c

Very forward neutron (leading baryon) inelasticity k = = E_inel/Etotal ~ (Etotal – E_lead)/Etot

Very forward neutron (leading baryon) inelasticity k = = E_inel/Etotal ~ (Etotal – E_lead)/Etot A. Adare, et al. , Phys. Rev. D, 88, 032006 (2013) K. Kawade Ph. D thesis (2014) Preliminary RHIC PHENIX (200 Ge. V), ISR (30. 6 -62. 7 Ge. V) LHCf 7 Te. V neutron (Arm 1 only) 0<PT<0. 11 x. F Ge. V/c 12

Rapidity vs Forward energy spectra (in LHCf) Gamma-rays @ √s=14 Te. V h= 7.

Rapidity vs Forward energy spectra (in LHCf) Gamma-rays @ √s=14 Te. V h= 7. 6 8. 0 40 7 h= 450 mrad 0 h=5. 99 h=6. 91 8. 4 = h h= 7 8. 310 mrad 7 . 7 h=8 h= 8. 7 h= ∞ θ [μrad] η 310 8. 7 0 ∞ Viewed from IP 1 (red: Arm 1, blue: Arm 2) Projected edge of beam pipe 13

RHICf site at Z=18 m (~ 140 m x 500 Ge. V/7 Te. V)

RHICf site at Z=18 m (~ 140 m x 500 Ge. V/7 Te. V) h>5. 8 p RHICf 18 m RHICf calorimeter Existing ZDC IP Beam pipe Neut ral p artic les • Same Pt coverage as LHC 7 Te. V • RHICf+ZDC better neutron E and Pt resolution 14

RHICf expected distributions (1 hour; pos 1)

RHICf expected distributions (1 hour; pos 1)

RHICf expected pi 0 (1 hour; pos 1)

RHICf expected pi 0 (1 hour; pos 1)

Diffraction tagging with STAR and Roman pots (joint operation with STAR ) p RP

Diffraction tagging with STAR and Roman pots (joint operation with STAR ) p RP STAR g, n single diffraction RHICf Diffractive mass ξ by RP No high p. T tack in central

Summary • RHICf : neutral measurement at RHIC zerodegree by LHCf Arm 1 detector.

Summary • RHICf : neutral measurement at RHIC zerodegree by LHCf Arm 1 detector. – high energy cosmic ray interactions at ~1014 e. V – Very forward production at zero degree • RHICf 500 Ge. V pp gives similar acceptance as LHC 7 Te. V. – Good verification of Feynman scaling in similar acceptance with the same detector. • Integration into STAR – ZDC : improved hadron energy reconstruction – Central detector+RP : diffractive tagging, event shape.

Backup

Backup

PLB 703 (2011) 128 -134 LHCf single g spectra at 7 Te. V and

PLB 703 (2011) 128 -134 LHCf single g spectra at 7 Te. V and 0. 9 Te. V PLB 715 (2012) 298 -303 h>10. 94 7 Te. V 8. 81<h<8. 99 0. 9 Te. V 3. 5 Te. V h>10. 15 DPMJET 3. 04 QGSJETII-03 SIBYLL 2. 1 EPOS 1. 99 PYTHIA 8. 145 3. 5 Te. V 8. 77 <h<9. 46 20

LHCf p 0 PT spectra at 7 Te. V PRD 86 (2012) 092001 Type-II

LHCf p 0 PT spectra at 7 Te. V PRD 86 (2012) 092001 Type-II 1

LHCf EM(p 0) energy flow vs rapidity (7 Te. V) Plot by N. Sakurai

LHCf EM(p 0) energy flow vs rapidity (7 Te. V) Plot by N. Sakurai 22

Very forward neutron at 7 Te. V p-p • h>10. 76 : QGSJET 03

Very forward neutron at 7 Te. V p-p • h>10. 76 : QGSJET 03 good, >h>9. 22 DPMJET 3 good • Larger neutron / gamma ratio than expected 40% E res. unfolded h> 10. 76 8. 99<h<9. 22 y r a n i m i l Pre Data 3. 05± 0. 19 Data 1. 26± 0. 08 DPMJET 3. 04 EPOS 1. 99 PYTHIA 8. 145 QGSJET II-03 SYBILL 2. 1 1. 05 1. 80 1. 27 2. 34 0. 88 DPMJET 3. 04 EPOS 1. 99 PYTHIA 8. 145 QGSJET II-03 SYBILL 2. 1 0. 76 0. 69 0. 82 0. 65 0. 57 n/g ratio n / g ratio ary n i im Prel 23

LHCf neutron energy flow vs rapidity Plot by N. Sakurai 24

LHCf neutron energy flow vs rapidity Plot by N. Sakurai 24

Feynman scaling violation and air showers T. Wibig, Phys Lett B 678 (2009) 60

Feynman scaling violation and air showers T. Wibig, Phys Lett B 678 (2009) 60 Air shower max for UHECR data a ; scaling violation parameter

√s scaling : a key for extrapolation beyond the LHC All π0 expected from

√s scaling : a key for extrapolation beyond the LHC All π0 expected from models (0. 5 Te. V, 14 Te. V and 50 Te. V) LHCf single photon data (900 Ge. V pp , 7 Te. V pp) DPMJET 3 QGSJET II Preliminary 0. 9 Te. V (η>8. 68) 7 Te. V scaled (η>10. 94) Comparison done in the very limited phase space of 900 Ge. V co (green triangle in the phase space plot) 26

Event sample (π0 g 2γ ) at LHC 7 Te. V p+p Longitudinal development

Event sample (π0 g 2γ ) at LHC 7 Te. V p+p Longitudinal development measured by scintillator layers 25 mm Tower 32 mm Tower 600 Ge. V 420 Ge. V photon Total Energy deposit Energy Shape PID Lateral distribution measured by silicon detectors Hit position, Multi-hit search. X-view Y-view π0 mass reconstruction from two photon. Systematic studies 27

Detector performance Ehad resolution Eg resolution 4% Number of event 100 200 Ge. V

Detector performance Ehad resolution Eg resolution 4% Number of event 100 200 Ge. V electrons 200 E(Ge. V) 350 Ge. V protons sx=172 mm Position resolution For hadron, Dx~2. 5 mm x-pos[mm] 28

Hadron shower reconstruction Check by SPS 350 Ge. V p beam 29

Hadron shower reconstruction Check by SPS 350 Ge. V p beam 29

Xf ratio ( p 0 )

Xf ratio ( p 0 )