PIANTE Organismi pluricellulari fotosintetici costituiti da cellule eucariotiche

  • Slides: 22
Download presentation
PIANTE Organismi pluricellulari fotosintetici costituiti da cellule eucariotiche vacuolate e con pareti cellulosiche.

PIANTE Organismi pluricellulari fotosintetici costituiti da cellule eucariotiche vacuolate e con pareti cellulosiche.

Eventi principali nell’evoluzione delle piante Le piante terrestri si sono evolute Oltre 500 milioni

Eventi principali nell’evoluzione delle piante Le piante terrestri si sono evolute Oltre 500 milioni di anni fa da alghe caroficee

GIMNOSPERME “Piante a seme nudo”, circa 700 specie, sono le piante a seme più

GIMNOSPERME “Piante a seme nudo”, circa 700 specie, sono le piante a seme più primitive Conifere ANGIOSPERME Piante a fiore. 250. 000 specie Monocotiledoni e dicotiledoni

Il corpo vegetativo delle piante consiste di due parti: Il sistema radicale Il sistema

Il corpo vegetativo delle piante consiste di due parti: Il sistema radicale Il sistema di parti aeree Sistema di parti aeree: fusto primario, rami Sistema radicale: radice primaria e radici secondarie e terziarie

Caratteristiche strutturali comuni a tutte le angiosperme, tuttavia tra monocotiledoni e dicotiledoni alcune differenze

Caratteristiche strutturali comuni a tutte le angiosperme, tuttavia tra monocotiledoni e dicotiledoni alcune differenze anatomiche M: orchidee, gigli, palme, riso, mais D: rose fagioli, spinaci, girasole, querce

Ogni organo vegetale consiste di diversi tessuti e ogni tessuto contiene molti tipi di

Ogni organo vegetale consiste di diversi tessuti e ogni tessuto contiene molti tipi di cellule Gli organi vegetali consistono di tre diversi tessuti Ø DERMICO Ø VASCOLARE Ø FONDAMENTALE In complesso questi tessuti contengono circa 40 diversi tipi cellulari Il corpo umano contiene diverse centinaia di tipi cellulari Piante organismi più semplici

Organizzazione dei tre sistemi di tessuti nel corpo della pianta

Organizzazione dei tre sistemi di tessuti nel corpo della pianta

Tessuti dermici Epidermide: in piante giovani: singolo strato di cellule con parete cellulare ispessita

Tessuti dermici Epidermide: in piante giovani: singolo strato di cellule con parete cellulare ispessita rivestita dalla cuticola (differenziamento in tricomi o cellule di guardia nelle foglie e in peli radicali nella radice) Periderma: in piante mature, comprende la corteccia; compare all’inizio dell’ispessimento e dopo la caduta dell’epidermide

Tessuti fondamentali Parenchima: cellule con parete sottile, si trovano in tutti i tessuti. Foglie:

Tessuti fondamentali Parenchima: cellule con parete sottile, si trovano in tutti i tessuti. Foglie: fotosintesi (mesofillo) Fusto e radice: accumulo di amido e saccarosio Semi: amiloplasti, corpi proteici e corpi oleosi Floema: cellule compagne Collenchima: pareti cellulari più spesse, allungate, raggruppate in file verticali al di sotto dell’epidermide, con funzione di supporto meccanico Sclerenchima: cellule morte con pareti ispessite e lignificate. Formano fibre che sostengono e proteggono il floema nei fusti

Tessuti vascolari Xilema: elementi dei vasi (tracheidi), cellule allungate, morte con pareti ispessite e

Tessuti vascolari Xilema: elementi dei vasi (tracheidi), cellule allungate, morte con pareti ispessite e lignificate; Trasporto di acqua e soluti dalle radici alle foglie Floema: elementi dei tubi cribrosi cellule cribrose), cellule vitali prive di nucleo e tonoplasto. Trasporto dei fotoassimilati nelle regioni sink della pianta.

Organizzazione dei tessuti primari in una radice

Organizzazione dei tessuti primari in una radice

Organizzazione dei tessuti primari in giovani fusti

Organizzazione dei tessuti primari in giovani fusti

Organizzazione dei tessuti fogliari

Organizzazione dei tessuti fogliari

LO XILEMA ED IL FLOEMA tessuto vascolare xilema floema responsabile del trasporto di H

LO XILEMA ED IL FLOEMA tessuto vascolare xilema floema responsabile del trasporto di H 2 O e nutrienti dalle radici alle foglie responsabile del trasporto di H 2 O e di vari composti nella pianta

XILEMA: trasporto dell’acqua e dei sali minerali

XILEMA: trasporto dell’acqua e dei sali minerali

Assorbimento dell’H 2 O dalle radici I peli radicali aumentano enormemente la superficie disponibile

Assorbimento dell’H 2 O dalle radici I peli radicali aumentano enormemente la superficie disponibile per l’assorbimento. L’H 2 O può seguire tre vie Apoplastica Transmembrana simplastica Banda di Caspary parete cellulare radiale nell’endodermide impregnata di suberina L’H 2 O entra prevalentemente nella zona apicale che non è suberinizzata

XILEMA struttura specializzata per il trasporto dell’H 2 O con la massima efficienza sovrapposizione

XILEMA struttura specializzata per il trasporto dell’H 2 O con la massima efficienza sovrapposizione di elementi vasali a formare un vaso le tracheidi e gli elementi vasali sono cellule elementi vasali a differenza delle tracheidi sono impaccati uno su l’altro tracheidi morte che non possiedono membrane e organuli. Tubi cavi rinforzati da pareti secondarie lignificate Tracheidi angiosperme, gimnosperme Vasi angiosperme

meccanismi e forze motrici per il trasporto dell’acqua gradiente di concentrazione del vapor d’acqua

meccanismi e forze motrici per il trasporto dell’acqua gradiente di concentrazione del vapor d’acqua nella traspirazione gradiente di pressione nel trasporto a lunga distanza nello xilema gradiente di potenziale idrico nella radice gradiente di pressione nel suolo

Spostamento dell’H 2 O nello xilema Flusso di massa Pressione radicale? non è sufficiente

Spostamento dell’H 2 O nello xilema Flusso di massa Pressione radicale? non è sufficiente MPa e si annulla se la traspirazione è elevata) L’H 2 O si muove per la forte TENSIONE (pressione idrostatica negativa) che si sviluppa in seguito alla traspirazione e che tende ad aspirare l’H 2 O nello xilema TEORIA DELLA COESIONE-TENSIONE Parete secondaria necessaria per evitare il collasso dello xilema forza esercitata sulle pareti dall’H 2 O sotto tensione

l’H 2 O, evaporata dalla superficie delle cellule negli spazi aeriferi, esce dalla foglia

l’H 2 O, evaporata dalla superficie delle cellule negli spazi aeriferi, esce dalla foglia per diffusione la forza motrice per la perdita di H 2 O è il GRADIENTE DI CONCENTRAZIONE del vapor d’acqua tra gli spazi aeriferi e l’aria La velocità di traspirazione dipende, oltre che dal gradiente di concentrazione, dalla resistenza alla diffusione

STOMI: regolazione della traspirazione

STOMI: regolazione della traspirazione