DyeNanochannel Composites for Solar Energy Conversion Devices Gion

  • Slides: 22
Download presentation
Dye-Nanochannel Composites for Solar Energy Conversion Devices Gion Calzaferri Department of Chemistry and Biochemistry,

Dye-Nanochannel Composites for Solar Energy Conversion Devices Gion Calzaferri Department of Chemistry and Biochemistry, University of Bern, Switzerland

Power balance of the earth Chem. Phys. Chem, 2011, 12, 580 2 Dye-Nanochannel Composites

Power balance of the earth Chem. Phys. Chem, 2011, 12, 580 2 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri

Photosynthesis Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 3

Photosynthesis Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 3

Antenna system of green plants 30 -300 BCls pro RC X. Hu, K. Schulten,

Antenna system of green plants 30 -300 BCls pro RC X. Hu, K. Schulten, Phys. Tod. 50 (1997) 28 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 4

Designing an artificial antenna lm* ~12 lm* FRET = Förster Resonance Energy Transfer T.

Designing an artificial antenna lm* ~12 lm* FRET = Förster Resonance Energy Transfer T. Förster, Zwischenmolekulare Energiewanderung u. Fluoreszenz. Ann. Phys. 2 (1948) 55 (Nat. W 1946) D. L. Dexter, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys. 21 (1953) 836 A. S. Davydov, Theory of Molecular Excitons. Usp. Fiz. Nauk 82 (1964) 393 (JETP 1948) Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 5

Common feature of 1 D channels: They have only 2 entrances ~1 nm Langmuir,

Common feature of 1 D channels: They have only 2 entrances ~1 nm Langmuir, 2012, 28, 6216. dx. doi. org/10. 1021/la 3000872 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 6

Artificial antenna: Principle ~0. 71 nm ~1. 84 nm 7

Artificial antenna: Principle ~0. 71 nm ~1. 84 nm 7

Packing of dyes: Intermolecular interactions Chem. Phys. Chem. 12 (2011) 580 Dye-Nanochannel Composites for

Packing of dyes: Intermolecular interactions Chem. Phys. Chem. 12 (2011) 580 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 8

Zeolite L is an ideal host for supramolecular organization of dyes 600 nm 30

Zeolite L is an ideal host for supramolecular organization of dyes 600 nm 30 nm – 8’ 000 nm 0. 71 nm 1. 26 nm organized monomers 60 nm crystal ® 38000 dyes Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 96’ 000 channels Angew. Chem. Int. Ed. 42 (2003) 3732 9

Insertion of dyes Nano-bulbs – not blinking Photochem. Photobiol. Sci. 7 (2008) 887 Dye-Nanochannel

Insertion of dyes Nano-bulbs – not blinking Photochem. Photobiol. Sci. 7 (2008) 887 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 10

Artificial antenna: FRET experiments length mm occupation probability 0. 3 600 nm p=0. 11

Artificial antenna: FRET experiments length mm occupation probability 0. 3 600 nm p=0. 11 . 182. 106 0. 5. 85 1. 4 2. 4 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri . 057. 031. 012. 007 11

Artificial antenna: Large donor to acceptor ratio D: A= 52 Chem. Phys. Chem. 12

Artificial antenna: Large donor to acceptor ratio D: A= 52 Chem. Phys. Chem. 12 (2011) 580 A 1 2 3 4 5 6 99 100 101 102 103 104 A D: A= 104: 2 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 12

Artificial antenna: Bidirectional Patents EP 1335879, US 6932919, US 7327012 Angew. Chem. Int. Ed.

Artificial antenna: Bidirectional Patents EP 1335879, US 6932919, US 7327012 Angew. Chem. Int. Ed. 41 (2002) 2284 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 13

Stopcock modification and total surface modification Photochem. Photobiol. Sci. 7 (2008) 887 Dye-Nanochannel Composites

Stopcock modification and total surface modification Photochem. Photobiol. Sci. 7 (2008) 887 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 14

Artificial antenna: Injecting electronic excitation energy with a Ru 2+ complex 1. 84 nm

Artificial antenna: Injecting electronic excitation energy with a Ru 2+ complex 1. 84 nm Chem. Eur. J. 10 (2004) 5771 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 15

The first antenna organized on a macroscopic scale monodirectional Uni-directional antenna materials Angew. Chem.

The first antenna organized on a macroscopic scale monodirectional Uni-directional antenna materials Angew. Chem. Int. Ed. 45 (2006) 5408 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 16

Optical anisotropy of oriented monolayers Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April

Optical anisotropy of oriented monolayers Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri Photochem. Photobiol. Sci. 7 (2008) 887

Luminescent solar concentrator L. H. Slooff-Hoek, ECN Solar Energy, NL, 2005 Radiance Amplification by

Luminescent solar concentrator L. H. Slooff-Hoek, ECN Solar Energy, NL, 2005 Radiance Amplification by Multi-Stage Fluorescence System W. A. Shurcliff, Polaroid Corporation J. Opt. Soc. Am. 41 (1951) 2009 Solar Energy Conversion with Fluorescent Collectors Goetzberger et al. Appl. Phys. 14 (1977) 123 Luminescent Solar Concentrators. 1: Theory Of Operation and Techniques … A. H. Zewail et al. Appl. Optics 18 (1979) 3090 Photon Collection Efficiency of Fluorescent Solar Collectors Tom Markvart et al. Chimia 61 (2007) 780– 786 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 18

LSC demonstration: Adv. Energy Mater. 2012, 2, 12– 35 Thirty Years of Luminescent Solar

LSC demonstration: Adv. Energy Mater. 2012, 2, 12– 35 Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment Michael G. Debije* and Paul P. C. Verbunt Adv. Energy Mater. 2012, 2, 12– 35 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 19

Luminescent solar concentrator: Self-absorption Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012,

Luminescent solar concentrator: Self-absorption Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 20

Luminescent solar concentrator: Escape cone and criteria Large spectral range High transparency Low self-absorption

Luminescent solar concentrator: Escape cone and criteria Large spectral range High transparency Low self-absorption Low escape flux High stability High flexibility Low toxicity Langmuir, 2012, 28, 6216. dx. doi. org/10. 1021/la 3000872 Dye-Nanochannel Composites for Solar Energy Conversion Devices, Southampton, April 2012, Gion Calzaferri 21

Summary Artificial antenna Oriented monolayers Luminescent solar concentrator: Solution of old problems PD Dr.

Summary Artificial antenna Oriented monolayers Luminescent solar concentrator: Solution of old problems PD Dr. Dominik Brühwiler Dr. Andreas Kunzmann Dr. André Devaux Prof. Dr. Ettore Fois Prof. Dr. Gloria Tabacchi http: //www. optical-additives. com/ Langmuir, 2012, 28, 6216. dx. doi. org/10. 1021/la 3000872 22