Secure Multifactor Remote User Authentication Scheme for Internet

  • Slides: 15
Download presentation
Secure Multi‐factor Remote User Authentication Scheme for Internet of Things Environments u. Source :

Secure Multi‐factor Remote User Authentication Scheme for Internet of Things Environments u. Source : International Journal of Communication Systems, In Press, 2017 u. Authors : Parwinder Kaur Dhillon and Sheetal Kalra u. Speaker : Hsiao-Ling Wu u. Date: 2017/09/07 1

Outline Introduction Proposed scheme Security analysis Performance analysis Conclusions 2

Outline Introduction Proposed scheme Security analysis Performance analysis Conclusions 2

Introduction proposed network model 3

Introduction proposed network model 3

Proposed scheme(1/9) The registration phase The login phase The authentication phase Password change phase

Proposed scheme(1/9) The registration phase The login phase The authentication phase Password change phase User Gateway Sensor 4

Proposed scheme(2/9) Notation Ui GWN Description A user A gateway Sj A sensor node

Proposed scheme(2/9) Notation Ui GWN Description A user A gateway Sj A sensor node Xg Secure password known only to the GWN Xgu, Xgn IDi, PWi, Bi NIDj MIi, MPi n, m Secured password shared with the user and with the sensor node User’s identity, password, biometric Sensor node’s identity User’s masked identity and password Two random numbers 5

Proposed scheme(3/9) The registration phase for user Gateway User Choose IDi, PWi, Bi Select

Proposed scheme(3/9) The registration phase for user Gateway User Choose IDi, PWi, Bi Select random ri MPi = H(ri||PWi) MIi = H(ri||IDi) MBi = BH(ri||Bi) MPi, MIi, MBi Secure channel SC Add ri into SC SC = {ri, ei, fi, Xgu} Secure channel xi = H(MIi||Xg) yi = H(MPi||Xgu) zi = H(MBi||Xgu) ei = yi ⊕ xi fi = zi⊕ xi Smart card SC = {ei, fi, Xgu} 6

Proposed scheme(4/9) The registration phase for sensor node Xgn, NIDj Gateway Sensor Select random

Proposed scheme(4/9) The registration phase for sensor node Xgn, NIDj Gateway Sensor Select random rj MPj = H(Xgn||rj||NIDj) MNj = rj⊕Xgn RMPj = MPj ⊕MNj NIDj, RMPj, MNj ej, xj Store rj, ej, xj into memory rj* = MNj⊕Xgn MPj* =? H(Xgn||rj*||NIDj) MPj = RMPj ⊕MNj MPj* =? MPj xj = H(NIDj||Xg) yj = H(MPj||Xgn) ej = xj⊕yj 7

Proposed scheme(5/9) The login phase SC = {ri, ei, fi, Xgu} User Input IDi*,

Proposed scheme(5/9) The login phase SC = {ri, ei, fi, Xgu} User Input IDi*, PWi*, Bi* MIi* = H(ri||IDi*) MPi* = H(ri||PWi*) MBi* = BH(ri||Bi*) yi* = H(MPi*||Xgu) zi* = H(MBi*||Xgu) yi = ei ⊕ xi zi = f i ⊕ x i yi =? yi* zi =? zi* UNi=H(yi || zi ||Xgu||TS 1) UZi = n ⊕ xi Sensor MIi, ei, fi, UNi, UZi, TS 1 8

Proposed scheme(6/9) The authentication phase rj , e j , x j User MIi,

Proposed scheme(6/9) The authentication phase rj , e j , x j User MIi, ei, fi, UNi, UZi, TS 1 Gateway sensor Check |TS 1 -Tc| < △T yj = ej ⊕ xj Aj = H(Xgn||TS 1||TS 2)⊕yj MIi, ei, fi, UNi, NIDj, ej, Aj, TS 1, TS 2 9

Proposed scheme(7/9) The authentication phase sensor MIi, ei, fi, UNi, NIDj, ej, Aj, TS

Proposed scheme(7/9) The authentication phase sensor MIi, ei, fi, UNi, NIDj, ej, Aj, TS 1, TS 2 R 1, Hj, Vi, TS 1, TS 2, TS 3 Gateway Check |TS 2 -Tc| < △T xj* = h(NIDj*||Xg) yj* = ej ⊕ xj* yj = H(Xgn||TS 1||TS 2)⊕ Aj yj* =? yj xi* = h(MIi||Xg) yi* = ei ⊕ xi* zi* = fi ⊕ xi* UNi* =H(yi* || zi* ||Xgu||TS 1) UNi* =? UNi R 1 = xi* ⊕H(xj*||Xgn) Hj = H(xj*||Xgn||TS 1|| TS 2||TS 3) Vi = H(UNi* ||TS 1|| TS 2 ||TS 3) 10

Proposed scheme(8/9) The authentication phase User sensor Check |TS 3 -Tc| < △T Hj

Proposed scheme(8/9) The authentication phase User sensor Check |TS 3 -Tc| < △T Hj =? H(xj*||Xgn||TS 1|| TS 2||TS 3) xi* = R 1⊕H(xj||Xgn) n = UZi ⊕ xi* R = H(xi*||NIDj||TS 1|| TS 2||TS 3||TS 4)⊕m R 2 , T 1 , T 2 , T 3 , T 4 , V i 2 SK = H(H(n⊕m)||TS 1|| TS 2) Check |TS 4 -Tc| < △T Vi = H(UNi ||TS 1|| TS 2 ||TS 3) m = R 2⊕H(xi||NIDj||TS 1|| S 2||TS 3||TS 4) SK = H(H(n⊕m)||TS 1|| TS 2) 11

Proposed scheme(9/9) Password change phase SC = {ri, ei, fi, Xgu} User Input PWi*,

Proposed scheme(9/9) Password change phase SC = {ri, ei, fi, Xgu} User Input PWi*, Bi* MPi* = H(ri||PWi*) MBi* = BH(ri||Bi*) yi* = H(MPi*||Xgu) zi* = H(MBi*||Xgu) yi = ei ⊕ xi zi = f i ⊕ x i yi =? yi* zi =? zi* Input NPWi NMPi = H(ri||NPWi) nyi = H(NMPi||Xgu) nei = nyi ⊕ xi SC = {ri, nei, fi, Xgu} 12

Security analysis 11. An Y. Security analysis and enhancements of an effective biometric‐based remote

Security analysis 11. An Y. Security analysis and enhancements of an effective biometric‐based remote user authentication scheme using smart cards. Biomed Res Int. 2012; 2012. 19. Chen B‐L, Kuo W‐C, Wuu L‐C. Robust smart‐card‐based remote user password authentication scheme. Int J Commun Syst. 2014; 27 (2): 377‐ 389. 16. Yeh H‐L, Chen T‐H, Liu P‐C, Kim T‐H, Wei H‐W. A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors. 2011; 11(5): 4767‐ 4779. 20. Xue K, Ma C, Hong P, Ding R. A temporal‐credential‐based mutual authentication and key agreement scheme for wireless sensor networks. J Netw Comput Appl. 2013; 36(1): 316‐ 323. 22. Turkanović M, Brumen B, Hölbl M. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion. Ad Hoc Netw. 2014; 20: 96‐ 112. 38. Das AK, Goswami A. A robust anonymous biometric‐based remote user authentication scheme using smart cards. Journal of King Saud University‐Comput Inform Sci. 2015; 27(2): 193‐ 210. 43. He D, Kumar N, Chilamkurti N. A secure temporal‐credential‐based mutual authentication and key agreement scheme for wireless sensor networks, in Wireless and Pervasive Computing (ISWPC), 2013 International Symposium on, 2013; 1– 6. 13 29. Li C‐T, Weng C‐Y, Lee C‐C. An advanced temporal credential‐based security scheme with mutual authentication and key agreement for wireless sensor networks. Sensors. 2013; 13 (8): 9589‐ 9603.

Performance analysis 11. An Y. Security analysis and enhancements of an effective biometric‐based remote

Performance analysis 11. An Y. Security analysis and enhancements of an effective biometric‐based remote user authentication scheme using smart cards. Biomed Res Int. 2012; 2012. 19. Chen B‐L, Kuo W‐C, Wuu L‐C. Robust smart‐card‐based remote user password authentication scheme. Int J Commun Syst. 2014; 27 (2): 377‐ 389. 16. Yeh H‐L, Chen T‐H, Liu P‐C, Kim T‐H, Wei H‐W. A secured authentication protocol for wireless sensor networks using elliptic curves cryptography. Sensors. 2011; 11(5): 4767‐ 4779. 20. Xue K, Ma C, Hong P, Ding R. A temporal‐credential‐based mutual authentication and key agreement scheme for wireless sensor networks. J Netw Comput Appl. 2013; 36(1): 316‐ 323. 22. Turkanović M, Brumen B, Hölbl M. A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion. Ad Hoc Netw. 2014; 20: 96‐ 112. 38. Das AK, Goswami A. A robust anonymous biometric‐based remote user authentication scheme using smart cards. Journal of King Saud University‐Comput Inform Sci. 2015; 27(2): 193‐ 210. 43. He D, Kumar N, Chilamkurti N. A secure temporal‐credential‐based mutual authentication and key agreement scheme for wireless sensor networks, in Wireless and Pervasive Computing (ISWPC), 2013 International Symposium on, 2013; 1– 6. 14 29. Li C‐T, Weng C‐Y, Lee C‐C. An advanced temporal credential‐based security scheme with mutual authentication and key agreement for wireless sensor networks. Sensors. 2013; 13 (8): 9589‐ 9603.

Conclusions Multi‐factor authentication scheme High security level lightweight Less storage 15

Conclusions Multi‐factor authentication scheme High security level lightweight Less storage 15