Electronic Spectroscopy of JetCooled HCP Fumie X Sunahori

  • Slides: 15
Download presentation
Electronic Spectroscopy of Jet-Cooled HCP+ Fumie X. Sunahori, Xiao. Peng Zhang, and Dennis J.

Electronic Spectroscopy of Jet-Cooled HCP+ Fumie X. Sunahori, Xiao. Peng Zhang, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Funding: National Science Foundation

Motivation § C P bond - First report of HCP by Gier (1961) -

Motivation § C P bond - First report of HCP by Gier (1961) - Emission Spectra of HCP+ and DCP+ by Maier et al (1981, 1982, 1987) - Theoretical study using coupled cluster methods by Schaefer et al (2005) - Discovery of HCP in space by Guélin et al (June 2007) § High-resolution LIF to improve the molecular structures of HCP+ § No previous thorough Renner-Teller fit

Background 3 2 X A i HCP+ 7 9 valence electrons 6 5 2

Background 3 2 X A i HCP+ 7 9 valence electrons 6 5 2

Production of HCP+/DCP+ Gas Mixture: HCP/DCP in Ar

Production of HCP+/DCP+ Gas Mixture: HCP/DCP in Ar

Low-Resolution LIF Expt. (HCP+) -1 0′ = 2986. 0 cm 1 -1 0′ =

Low-Resolution LIF Expt. (HCP+) -1 0′ = 2986. 0 cm 1 -1 0′ = 717. 5 cm 2 0 3′ = 1282. 0 cm-1 *CCSDT/cc-p. VQZ. Theory (HCP+)* 1′ = 3157 cm-1 2′ = 756 cm-1 3′ = 1305 cm-1 H. F. Schaefer III et al, J. Theor. And Comput. Chem. 4, 707 (2005). 2 + -2 143 cm-1 3/2 1/2 ?

High-Resolution LIF (HCP+) HCP+ 000 band Hyperfine Effect! F=I+J ΔJ = 0, ± 1

High-Resolution LIF (HCP+) HCP+ 000 band Hyperfine Effect! F=I+J ΔJ = 0, ± 1 ΔF = 0, ± 1

High-Resolution LIF part 2 J' = 4. 5 Ã (000) N' = 4 B′

High-Resolution LIF part 2 J' = 4. 5 Ã (000) N' = 4 B′ 0. 673 17(26) J' = 3. 5 6 10 D′ 1. 0(18) γ b. F c F' = 5 F' =˜ 4 X (000) F' = 3 B″F' = 40. 622 54(29) 106 D″ 1. 6(19) 0. 011 4(9) R 11(3. 5) A″ -146. 97 0. 106(5) Q 21(3. 5) 0. 08(3) T 00= 3 16 765. 174(4) N" J" = 3. 5 1. 5 F" = 3, 4 2. 5

Hyperfine Effects à 2Σ + X=0 Heff=BN 2 -DN 4+(γ-γDN 2)N·S+b. I·S+c. Iz·Sz F>0

Hyperfine Effects à 2Σ + X=0 Heff=BN 2 -DN 4+(γ-γDN 2)N·S+b. I·S+c. Iz·Sz F>0 N=F 2. 5 N= F N = F-1 N = F+1 J=N-1/2 J=N+1/2 J=N-1/2 N=F W X 0 0 0 N=F 0 X Y 0 0 N=F-1 0 0 Z 0 U N=F+1 0 0 U 0 V 1. 5

Fermi Contact Interaction or… b. F(31 P) = 0. 4478 cm-1 b. F(exp. )

Fermi Contact Interaction or… b. F(31 P) = 0. 4478 cm-1 b. F(exp. ) = 0. 106 cm-1 %3 s of P = 24 %

Molecular Structures of HCP+ Ground State 1. 077(2) Å [1. 082 Å] 1. 6013(3)

Molecular Structures of HCP+ Ground State 1. 077(2) Å [1. 082 Å] 1. 6013(3) Å [1. 6041 Å] [core] (5 )2 (6 )2 (7 )2 (2 )3 Excited State 1. 082(2) Å [1. 090 Å] 1. 5331(3) Å [1. 5328 Å] [core] (5 )2 (6 )2 (7 )1 (2 )4

Renner-Teller Analysis (021)μ 2Π 3/2 (020)μ 2Π 3/2 Std. Dev. = 0. 78 Effective

Renner-Teller Analysis (021)μ 2Π 3/2 (020)μ 2Π 3/2 Std. Dev. = 0. 78 Effective cm-1 Std. Dev. = 0. 62 cm-1 Hamiltonian: H = Hvib + HSO + HRT + Ha + HFR

Mystery Molecule? HCP+ ? ?

Mystery Molecule? HCP+ ? ?

It. CCP! is… HCP+ Stay Tuned…!

It. CCP! is… HCP+ Stay Tuned…!

Thank You!!

Thank You!!

Results of R-T Analysis Parameter (cm-1) 1 2 3 A gk g 4 W

Results of R-T Analysis Parameter (cm-1) 1 2 3 A gk g 4 W 1 W 2 x 13 x 23 x 33 HCP+ 3124. 8(6) 642. 7(3) 1156. 0(7) -0. 034(2) -148. 4(5) 6. 6(3) 0. 0 4. 6(12) 6. 0(4) -6. 9(10) -8. 6(5) -5. 9(3) DCP+ 2356. 7(4) 500. 6(8) 1107. 6(10) -0. 028(1) -147. 6(3) 3. 5(2) 1. 1(3) 20. 6(6) 5. 4(2) -4. 4(4) -10. 8(11) -7. 1(2)