EE 4780 Introduction to Computer Vision Linear Systems

  • Slides: 23
Download presentation
EE 4780: Introduction to Computer Vision Linear Systems Bahadir K. Gunturk

EE 4780: Introduction to Computer Vision Linear Systems Bahadir K. Gunturk

Review: Linear Systems n We define a system as a unit that converts an

Review: Linear Systems n We define a system as a unit that converts an input function into an output function. Independent System operator variable Bahadir K. Gunturk 2

Linear Systems n Let where fi(x) is an arbitrary input in the class of

Linear Systems n Let where fi(x) is an arbitrary input in the class of all inputs {f(x)}, and gi(x) is the corresponding output. n If Then the system H is called a linear system. n A linear system has the properties of additivity and homogeneity. Bahadir K. Gunturk 3

Linear Systems n The system H is called shift invariant if for all fi(x)

Linear Systems n The system H is called shift invariant if for all fi(x) {f(x)} and for all x 0. n This means that offsetting the independent variable of the input by x 0 causes the same offset in the independent variable of the output. Hence, the input-output relationship remains the same. Bahadir K. Gunturk 4

Linear Systems n The operator H is said to be causal, and hence the

Linear Systems n The operator H is said to be causal, and hence the system described by H is a causal system, if there is no output before there is an input. In other words, n A linear system H is said to be stable if its response to any bounded input is bounded. That is, if where K and c are constants. Bahadir K. Gunturk 5

Linear Systems n A unit impulse function, denoted (a), is defined by the expression

Linear Systems n A unit impulse function, denoted (a), is defined by the expression (a) (x-a) x Bahadir K. Gunturk a 6

Linear Systems n The response of a system to a unit impulse function is

Linear Systems n The response of a system to a unit impulse function is called the impulse response of the system. h(x) = H[ (x)] Bahadir K. Gunturk 7

Linear Systems n If H is a linear shift-invariant system, then we can find

Linear Systems n If H is a linear shift-invariant system, then we can find its reponse to any input signal f(x) as follows: n This expression is called the convolution integral. It states that the response of a linear, fixed-parameter system is completely characterized by the convolution of the input with the system impulse response. Bahadir K. Gunturk 8

Linear Systems n Convolution of two functions is defined as n In the discrete

Linear Systems n Convolution of two functions is defined as n In the discrete case Bahadir K. Gunturk 9

Linear Systems n In the 2 D discrete case is a linear filter. Bahadir

Linear Systems n In the 2 D discrete case is a linear filter. Bahadir K. Gunturk 10

Convolution Example h 1 -1 -1 1 2 -1 1 Rotate 1 1 1

Convolution Example h 1 -1 -1 1 2 -1 1 Rotate 1 1 1 -1 2 1 -1 -1 1 f 2 2 2 3 2 1 3 3 2 2 1 3 2 2 From C. Rasmussen, U. of Delaware Bahadir K. Gunturk 11

Convolution Example -1 2 1 Step 1 1 -1 1 1 h 1 1

Convolution Example -1 2 1 Step 1 1 -1 1 1 h 1 1 1 -1 2 4 2 2 3 -1 2 -2 1 3 3 2 2 1 3 2 2 f 2 2 2 3 2 1 3 3 2 2 1 3 2 2 5 f*h From C. Rasmussen, U. of Delaware Bahadir K. Gunturk 12

Convolution Example -1 2 1 Step 2 1 -1 1 1 h 1 1

Convolution Example -1 2 1 Step 2 1 -1 1 1 h 1 1 1 2 -2 2 4 2 3 2 -2 1 -1 3 3 2 2 1 3 2 2 f 5 2 2 2 3 2 1 3 3 2 2 1 3 2 2 4 f*h From C. Rasmussen, U. of Delaware Bahadir K. Gunturk 13

Convolution Example -1 2 1 Step 3 1 -1 1 1 h 1 1

Convolution Example -1 2 1 Step 3 1 -1 1 1 h 1 1 1 2 2 -2 2 4 3 2 1 -1 3 -3 3 2 2 1 3 2 2 f 5 4 2 2 2 3 2 1 3 3 2 2 1 3 2 2 4 f*h From C. Rasmussen, U. of Delaware Bahadir K. Gunturk 14

Convolution Example -1 2 1 Step 4 1 -1 1 1 h 1 1

Convolution Example -1 2 1 Step 4 1 -1 1 1 h 1 1 1 2 2 2 -2 3 6 1 2 1 3 -3 1 2 2 1 3 2 2 f 5 4 2 2 2 3 2 1 3 3 2 2 1 3 2 2 4 -2 f*h From C. Rasmussen, U. of Delaware Bahadir K. Gunturk 15

Convolution Example -1 2 1 Step 5 1 -1 1 1 h 1 2

Convolution Example -1 2 1 Step 5 1 -1 1 1 h 1 2 2 2 3 5 -1 4 2 1 3 3 9 -1 -2 2 2 1 3 2 2 f 4 2 2 2 3 2 1 3 3 2 2 1 3 2 2 4 -2 f*h From C. Rasmussen, U. of Delaware Bahadir K. Gunturk 16

Convolution Example -1 2 1 Step 6 1 -1 1 1 h 2 2

Convolution Example -1 2 1 Step 6 1 -1 1 1 h 2 2 2 3 5 4 -2 2 2 1 3 3 9 6 2 -2 1 2 1 3 2 2 f 2 2 2 3 2 1 3 3 2 2 1 3 2 2 4 -2 f*h From C. Rasmussen, U. of Delaware Bahadir K. Gunturk 17

Convolution Example and so on… From C. Rasmussen, U. of Delaware Bahadir K. Gunturk

Convolution Example and so on… From C. Rasmussen, U. of Delaware Bahadir K. Gunturk 18

Example * Bahadir K. Gunturk = 19

Example * Bahadir K. Gunturk = 19

Example * Bahadir K. Gunturk = 20

Example * Bahadir K. Gunturk = 20

Try MATLAB f=imread(‘saturn. tif’); figure; imshow(f); [height, width]=size(f); f 2=f(1: height/2, 1: width/2); figure;

Try MATLAB f=imread(‘saturn. tif’); figure; imshow(f); [height, width]=size(f); f 2=f(1: height/2, 1: width/2); figure; imshow(f 2); [height 2, width 2=size(f 2); f 3=double(f 2)+30*rand(height 2, width 2); figure; imshow(uint 8(f 3)); h=[1 1 1 1; 1 1]/16; g=conv 2(f 3, h); figure; imshow(uint 8(g)); Bahadir K. Gunturk 21

Gaussian Lowpass Filter Bahadir K. Gunturk 22

Gaussian Lowpass Filter Bahadir K. Gunturk 22

Gaussian Lowpass Filter Original Bahadir K. Gunturk =2 =4 From Forsyth & Ponce 23

Gaussian Lowpass Filter Original Bahadir K. Gunturk =2 =4 From Forsyth & Ponce 23