2 d F Galaxy Redshift Survey M galaxies

  • Slides: 37
Download presentation
2 d. F Galaxy Redshift Survey ¼ M galaxies 2003 n o iz 4

2 d. F Galaxy Redshift Survey ¼ M galaxies 2003 n o iz 4 1/ CFA Survey 1980 of th e r o h

The Initial Fluctuations At Inflation: Gaussian, adiabatic a realization of an ensemble ensembe average

The Initial Fluctuations At Inflation: Gaussian, adiabatic a realization of an ensemble ensembe average ~ volume average fluctuation field Fourier Power Spectrum rms δ Pk k M

Scale-Invariant Spectrum (Harrison-Zel’dovich) mass M time

Scale-Invariant Spectrum (Harrison-Zel’dovich) mass M time

Cosmological Scales mass teq zeq~104 t 0 time

Cosmological Scales mass teq zeq~104 t 0 time

CDM Power Spectrum mass growth when matter is self-gravitating teq CDM t time Pk

CDM Power Spectrum mass growth when matter is self-gravitating teq CDM t time Pk HDM free streeming Meq mass CDM kpeak m h k

Formation of Large-Scale Structure Fluctuation growth in the linear regime: rms fluctuation at mass

Formation of Large-Scale Structure Fluctuation growth in the linear regime: rms fluctuation at mass scale M: Typical objects forming at t: example HDM: top-down CDM: bottom-up 1 1 free streaming 0 M

Power Spectrum

Power Spectrum

ΛCDM Power Spectrum normalization:

ΛCDM Power Spectrum normalization:

Lecture Non-linear Growth of Structure Spherical Collapse, Virial Theorem, Zel’dovich Approximation, N-body Simulations

Lecture Non-linear Growth of Structure Spherical Collapse, Virial Theorem, Zel’dovich Approximation, N-body Simulations

Formation of Large-Scale Structure: comoving

Formation of Large-Scale Structure: comoving

Filamentary Structure: Zel’dovich Approximation Approximate the displacement from initial position Velocity & acceleration along

Filamentary Structure: Zel’dovich Approximation Approximate the displacement from initial position Velocity & acceleration along displacement → trajectories straight lines as in linear central force → potential flow In physical coordinates Density (Lagrangian): Jacobian continuity → caustics filament 42% cluster 8% pancake 42% deformation tensor eigenvalues

Zel’dovich Approximation cont’d linear → D is the growing mode of GI obeying Error:

Zel’dovich Approximation cont’d linear → D is the growing mode of GI obeying Error: plug density in Poisson eq. → error is 2 nd +3 rd terms error small in linear regime or pancakes error big in spherical collapse

Non-dissipative Pancakes: why flat? R oscilation time << expansion time adiabatic invariant pancake becomes

Non-dissipative Pancakes: why flat? R oscilation time << expansion time adiabatic invariant pancake becomes flatter in time

N-body simulation CDM

N-body simulation CDM

N-body simulation

N-body simulation

N-body simulation

N-body simulation

N-body simulation spherical collapse or mergers

N-body simulation spherical collapse or mergers

N-body simulation spherical collapse or mergers

N-body simulation spherical collapse or mergers

N-body simulation spherical collapse or mergers

N-body simulation spherical collapse or mergers

xxx

xxx

N-body simulation of Halo Formation

N-body simulation of Halo Formation

N-body simulation of Halo Formation

N-body simulation of Halo Formation

Top-Hat Model (Λ=0, matter era) a bound sphere (k=1) in Ed. S universe (k=0)

Top-Hat Model (Λ=0, matter era) a bound sphere (k=1) in Ed. S universe (k=0) conformal time universe overdensity: 5. 55 linear perturbation Taylor turnaround linear equivalent to collapse 0 tmax tvir

universe 5. 55 4 200 8 perturbation 0 tmax tvir t

universe 5. 55 4 200 8 perturbation 0 tmax tvir t

Spherical Collapse universe radius perturbation virial equilibrium time virial equilibrium:

Spherical Collapse universe radius perturbation virial equilibrium time virial equilibrium:

Virial Scaling Relations Virial equilibrium: Spherical collapse: Weak dependence on time of formation: Practical

Virial Scaling Relations Virial equilibrium: Spherical collapse: Weak dependence on time of formation: Practical formulae:

Lecture 6 Hierarchical Clustering Press Schechter Formalism

Lecture 6 Hierarchical Clustering Press Schechter Formalism

Press Schechter Formalism halo mass function n(M, a) Gaussian random field nonlinear random spheres

Press Schechter Formalism halo mass function n(M, a) Gaussian random field nonlinear random spheres of mass M linear-extrapolated δrms at a: σ linear fraction of spheres with δ>δc =1. 68: a(t) a 0 =1 δ δc x PS ansaz: F is the mass fraction in halos >M (at a) derivative of F with respect to M: Mo & White 2002

Press Schechter Formalism cont. log n(M) Example: M*(a) self-similar evolution, scaled with M* approximate

Press Schechter Formalism cont. log n(M) Example: M*(a) self-similar evolution, scaled with M* approximate log M time Pk in a flat universe Top Hat k. R=π R x k

Press Schechter cont. Better fit using ellipsoidal collapse (Sheth & Tormen 2002) Comparison of

Press Schechter cont. Better fit using ellipsoidal collapse (Sheth & Tormen 2002) Comparison of PS to N-body simulations log M 2 n(M) factor 2 log M

Press-Schechter in ΛCDM 14 2σ 13 12 1σ log M/Mʘ 11 10 9 Mo

Press-Schechter in ΛCDM 14 2σ 13 12 1σ log M/Mʘ 11 10 9 Mo & White 2002

Press-Schechter Mo & White 2002

Press-Schechter Mo & White 2002

Merger Tree t

Merger Tree t

Mass versus Light Distribution halo mass galaxy stellar mass 40% of baryons

Mass versus Light Distribution halo mass galaxy stellar mass 40% of baryons