Scintillation and phonon measurement of 40 Ca 100

  • Slides: 18
Download presentation
Scintillation and phonon measurement of 40 Ca 100 Mo. O crystal for the AMo.

Scintillation and phonon measurement of 40 Ca 100 Mo. O crystal for the AMo. RE project 4 (AMo. RE project : searching a 0 n decay of 100 Mo) J. H. So on be half of AMo. RE collaboration SCINT 2015 1

0 n double beta decay Energy 100 Tc 100 Mo Forbidden transition Transition bb

0 n double beta decay Energy 100 Tc 100 Mo Forbidden transition Transition bb allowed Qb b 100 Ru Z Z Z+1 Z+2 (Z, A) → (Z+2, A) + 2 e- + 2 anti-ne (DL = 0, conserved) (Z, A) → (Z+2, A) + 2 e(DL = 2, violated) • 0 n DBD is forbidden by Standard Model for lepton number violation. • If neutrino is a majorana particle, 0 n DBD is possible. • We will be able to define the neutrino type and absolute mass. SCINT 2015 2

Why 100 Mo? Candidates Qbb(Me. V) N. A. (%) 48 Ca→ 48 Ti 4.

Why 100 Mo? Candidates Qbb(Me. V) N. A. (%) 48 Ca→ 48 Ti 4. 271 0. 187 76 Ge→ 76 Se 2. 040 7. 8 82 Se→ 82 Kr 2. 995 9. 2 96 Zr→ 96 Mo 3. 350 2. 8 100 Mo→ 100 Ru 3. 034 9. 6 110 Pd→ 110 Cd 2. 013 11. 8 116 Cd→ 116 Sn 2. 802 7. 5 124 Sn → 124 Te 2. 228 5. 64 130 Te→ 130 Xe 2. 533 34. 5 136 Xe→ 136 Ba 2. 479 8. 9 150 Nd→ 150 Sm 3. 367 5. 6 Phy. Rev. C, 53, 695 (1996) G. Pantis, F. Simkovic, J. D. Vergados, and Amand Faessler G : Phase space factor (~Qbb 5) M : Nuclear Matrix Element (large uncertainty) Barea et al. , Phy. Rev. Lett. 109, 042501 (2012) Ref. Werner Rodejohann, ar. Xiv: 1106. 1334 v 3. (2011). SCINT 2015 3

40 Ca 100 Mo. O • 4 crystal Enrichment of 100 Mo (natural abundance

40 Ca 100 Mo. O • 4 crystal Enrichment of 100 Mo (natural abundance : 9. 6%) - Gas-centrifuge method - Enrichment of 100 Mo is higher than 96%. • Depletion of 48 Ca (natural abundance : 0. 157%) in natural Ca - Electromagnetic separation - Composition of 48 Ca is less than 0. 001 %. SCINT 2015 4

Scintillation at Room Temp. Presented at SCINT 2011 S 35 (256 g) SB 28

Scintillation at Room Temp. Presented at SCINT 2011 S 35 (256 g) SB 28 (196 g) SB 28 Resolution : 30% (FWHM) Mean : 2. 88 x 105 S 35 Resolution : 16% (FWHM) Mean : 5. 97 x 105 CMO-3 Resolution : 16% (FWHM) Mean : 6. 79 x 105 CMO-3 SCINT 2015 5

Scintillation at Low Temp. Ref. Crystal research and Technology, 1 -6(2011) ? ? •

Scintillation at Low Temp. Ref. Crystal research and Technology, 1 -6(2011) ? ? • The light output is increased as temperature decreasing. → The energy resolution will be improved for the higher light output. • The decay time is delayed as temperature decreasing. • What will happen at sub-K Temp? SCINT 2015 6

Why we need to study it @ m. K? • For AMo. RE experiment

Why we need to study it @ m. K? • For AMo. RE experiment - No! scintillation light at m. K is quite enough to searching at the Q of 100 Mo (3. 034 Me. V). - However, it can be used to searching a dark matter! • For Dark matter search - Yes! It will be more serious for dark matter search. Region of Interesting : less than 50 ke. V. Select a low energy nuclear recoil event. The quenched event emit very small amount of scintillation light with much longer decay. • For luminescence mechanism - It is quite interesting itself to understanding the luminescence mechanism of Ca. Mo. O 4 crystal. SCINT 2015 7

Design concept for AMo. RE 4 (source = detector) + MMC (low temp. detector)

Design concept for AMo. RE 4 (source = detector) + MMC (low temp. detector) Light 40 Ca 100 Mo. O b, g events alpha Phonon SCINT 2015 8

Cryogenic light detector Wafer holder (Cu, heat bath) Phonon collector (Gold films) MMC chip

Cryogenic light detector Wafer holder (Cu, heat bath) Phonon collector (Gold films) MMC chip SQUID sensor Light absorber (Ge wafer) Thermal links # Three gold patterns ~0. 2 ms of rise time at 30 m. K Temp. independent rise time - Thickness : 320 nm - Diameter : 5 mm # Ge wafer - Thickness : 500 mm - Diameter : 2 inch SCINT 2015 9

Detector assembly SB 28 40 Ca 100 Mo. O crystal 4 SCINT 2015 10

Detector assembly SB 28 40 Ca 100 Mo. O crystal 4 SCINT 2015 10

Particle discrimination (heat/light) SCINT 2015 11

Particle discrimination (heat/light) SCINT 2015 11

Phonon (pulse shape discrimination) SCINT 2015 12

Phonon (pulse shape discrimination) SCINT 2015 12

Event selection of light signal 210 Po 2 sigma width 5. 4 Me. V

Event selection of light signal 210 Po 2 sigma width 5. 4 Me. V α The same width with α signals SCINT 2015 2 sigma width 13

Comparison of signals from LD Contribution of scintillation decay time? ! Two different time

Comparison of signals from LD Contribution of scintillation decay time? ! Two different time components are shown on rising part. SCINT 2015 14

Summary • Phonon and Photon of low radioactive 40 Ca 100 Mo. O 4

Summary • Phonon and Photon of low radioactive 40 Ca 100 Mo. O 4 scintillation crystal has been measured at few tens m. K temp. for AMo. RE experiment, even study for dark matter search exp. • Pulse shape discrimination of phonon signal was possible that maybe caused by scintillation process. • In order to prove the correlation between phonon and photon in the scintillation crystal, further study is planning to understand the complete picture of luminescence mechanism of Ca. Mo. O 4. SCINT 2015 15

Thank you for your attention! SCINT 2015 16

Thank you for your attention! SCINT 2015 16

Zero background experiment Sizable background case ; b = background index in cts/(ke. V

Zero background experiment Sizable background case ; b = background index in cts/(ke. V kg y) DE = FWHM energy resolution at Qbb in ke. V M = mass of detector in kg, A = mass number of candidate material e = detection efficiency at Qbb, a = bb isotope fraction (Enrichment), T = measured time in years “Zero” background case ; DBU: counts/ (ke. V kg year) SCINT 2015 17

Metallic Magnetic Calorimeter (Low temp. sensor) Magnetic material Au: Er(10~1000 ppm) • weakly-interacting paramagnetic

Metallic Magnetic Calorimeter (Low temp. sensor) Magnetic material Au: Er(10~1000 ppm) • weakly-interacting paramagnetic system • metallic host: fast thermalization ( ~ 1 s) Field coil Pickup coil g = 6. 8 Junctions 5 m. T Δε = 1. 5 e. V 1 ke. V 109 spin flips Faster response time! Excellent energy resolution! Wide operating temperature! Neutrino and Dark Matter in Nuclear Physics 2015, Jyvaskyla, Finland