Reaction kinetics For a reaction to occur Step

  • Slides: 5
Download presentation
Reaction kinetics For a reaction to occur: • Step 1: Energy must be SUPPLIED

Reaction kinetics For a reaction to occur: • Step 1: Energy must be SUPPLIED to break bonds. • Step 2: Energy is RELEASED when new bonds are made. A reaction is EXOTHERMIC if more energy is RELEASED then SUPPLIED (hotter). If more energy is SUPPLIED then is RELEASED then the reaction is ENDOTHERMIC (older). Even though no atoms are gained or lost in a chemical reaction, it is not always possible to obtain the calculated amount of a product because: • the reaction may not go to completion because it is reversible. • some of the product may be lost when it is separated from the reaction mixture • some of the reactants may react in ways different from the expected reaction. In some chemical reactions, the products of the reaction can react to produce the original reactants. Such reactions are called reversible reactions and are represented: A + B ammonium chloride NH 4 Cl (s) C + ammonia + D hydrogen chloride NH 3 (g) + HCl (g) The change from blue hydrated copper sulphate to white anhydrous copper sulphate is one of the most commonly known reversible reactions. hydrated copper sulphate anhydrous + steam copper sulphate Cu. SO 4. 5 H 2 O (s) Cu. SO 4 (s) + 5 H 2 O (l) If a reversible reaction is exothermic in one direction, it is endothermic in the opposite direction. The same amount of energy is transferred in each case.

1. 2. 3. 10 Questions For a reaction to occur why is energy supplied?

1. 2. 3. 10 Questions For a reaction to occur why is energy supplied? Why is energy released during a reaction? If more energy is supplied than released is the reaction exothermic or endothermic? 4. If a reaction is endothermic will the surroundings get warmer or colder? 5. A reaction requires a lot of heat to take place, it is endothermic or exothermic? 6. Is breaking bonds an endothermic or exothermic process? 7. Give 2 reasons why a yield is not always 100%? 8. What is the symbol for a reversible reaction? 9. Give an example of a reversible reaction. 10. If a reversible reaction is exothermic in 1 direction what must it be in the other? Reaction kinetics

Reaction rates Amount of product formed Fast rate of reaction here Slower rate of

Reaction rates Amount of product formed Fast rate of reaction here Slower rate of reaction here due to reactants being used up Slower reaction Time Reaction can be followed by: • Loss in mass if gas produced. • Measuring volume of a gas produced every min. • Appearance/disappearance of colour. • Change in p. H etc. Reactions occur when particles collide with sufficient energy. The minimum amount of energy required for particles to react on collision is called the activation energy. Factors affecting reaction rate Concentration: Increasing concentration increases number of collisions and increases rate Temperature: Particles have more energy and move faster and collide more often. More particles have energy greater than the activation energy so more successful collisions Catalyst: Catalysts change the rate of chemical reactions but are not used up during the reaction. Different reactions need different catalysts. Catalysts are important in increasing the rates of chemical reactions used in industrial processes to reduce costs. Pressure: Increasing pressure increases the number of collisions as the particles are closer. Surface area: Increases the number of collisions as there is more surface exposed

1. 2. 3. 4. 5. 6. 10 Questions What equipment can be used to

1. 2. 3. 4. 5. 6. 10 Questions What equipment can be used to measure the mass of a product? In terms of reactants how do we know when a reaction is completed? State 2 ways in which a reaction can be followed. Define activation energy. How do catalysts effect the activation energy? How does this change the rate of a reaction? Describe how the following factors effect the rate of a reaction in terms of amount (frequency) of collisions and energy of collisions? 7. 8. 9. 10. Increasing the temperature. Decreasing the concentration. Increasing the pressure of gaseous reactants. Grinding up solid calcium carbonate into a powder. Reaction rates

Mark Scheme Reaction kinetics 1. To break bonds 2. Bonds are made 3. Endothermic

Mark Scheme Reaction kinetics 1. To break bonds 2. Bonds are made 3. Endothermic 4. Colder 5. Endothermic 6. Endothermic 7. Yield is never 100% because: • The reaction may not go to completion because it is reversible. • Some of the product may be lost when it is separated from the reaction mixture • Some of the reactants may react in ways different from the expected reaction. 8. 9. NH 4 Cl (s) 10. Endothermic NH 3 (g) + HCl (g) Reaction rates 1. Balance (or) Scales 2. There are no reactants remaining 3. Amount of product formed (and) Amount of reactant used. 4. Reactions occur when particles collide with sufficient energy. The minimum amount of energy required for particles to react on collision is called the activation energy. 5. Catalysts lower the activation energy. 6. Speeds it up 7. Rate increases as frequency and energy of collisions increases. 8. Rate decreases as only the frequency of collisions decreases. 9. Rate increases as only the frequency of collisions increases. 10. Rate increases as the surface area is increased, therefore increasing the frequency of collisions increases.