New concept and theory of Myopia development J

  • Slides: 24
Download presentation
New concept and theory of Myopia development ______________ J. T. Lin, Ph. D New

New concept and theory of Myopia development ______________ J. T. Lin, Ph. D New Vision, Inc. Taiwan Beijing-8 -

Summary (1) (2) (3) (4) (5) (6) Human eye optics New concept of myopia

Summary (1) (2) (3) (4) (5) (6) Human eye optics New concept of myopia The ratio: L/r =3. 0 The growth rate theory The lens paradox Axial growth factors (defocusing, accommod) (7) Myopia predictor

Human eye optics S X Myopia F D 1 CORNEA D 2 LENS Hyperopia

Human eye optics S X Myopia F D 1 CORNEA D 2 LENS Hyperopia Retina

Effective eye model (Lin, 2005) S X L P 2 P 1 CORNEA LENS

Effective eye model (Lin, 2005) S X L P 2 P 1 CORNEA LENS L = S + X + a. T 2 De = z [ P 3 – P 1/z – P 2 ] z = (1 - S/f) = 1 - S P 1/1336 = 0. 8 to 0. 85

The basic myopic-theory (Lin, 2005) (1) Axial growth is triggered by (a) : retina

The basic myopic-theory (Lin, 2005) (1) Axial growth is triggered by (a) : retina defocusing, (b) (lens) accommondation (deshaping and translation). (2) Refractive errors resulted from the mismatching of ocular components growth rates De = Do + (d. D 1 + z 2 d. D 2) - md. L initial cornea lens axial m=4. 0 to 2. 5 D/mm, (depnding on age) Conditions of emmetropization: (a) Do >2. 0 ; (b) md. L < Do + [d. D 1 + z 2 d. D 2 ] Otherwise, myopia [De<0] will develop due to anormal axial growth. (md. L)

Myopia predictor Garner (2002), axial growth rate (per year) > 0. 12 mm Olson

Myopia predictor Garner (2002), axial growth rate (per year) > 0. 12 mm Olson (2007) regression Eq, (data, mean value) De= 110 – 2. 43 L – 0. 89 P 1 - 0. 62 P 2 De=0, for L= 23, P 1=43, need P 2=24. 8 D. Lin (2005), rate theory for L = 24 = S 1 + S 2 + T. De= 1. 39 (S 1 - 3. 3) – 2. 76 (S 2 - 16. 7) – 2. 9 (T – 4. 0) – 1. 0 (43 - P 1) – 0. 75 (23 -P 2) 0

New criterion for myopia-axial length L*=24 - 0. 36(P 1 -43) - 0. 23(P

New criterion for myopia-axial length L*=24 - 0. 36(P 1 -43) - 0. 23(P 2 -23) - 0. 5(So-3. 3) - 0. 35(T-4. 0) L*=24, for (P 1, P 2, So, T)=(43, 23, 3. 3, 4. 0) Example: L=26 mm could be myop or hyper, D= -1. 5, if L*=25 D=+2. 5, if L*=27 ). * JT Lin (Chin J O P, 2005, 145 -151). CK Chang, JT Lin, IJO (8/2017 0

New definition of Refractive States Emmetropic has been defined by ratios: H/L =1. 0,

New definition of Refractive States Emmetropic has been defined by ratios: H/L =1. 0, L/r =3. 0 , New ratios: C 1=L/r , C 2=L/R L r H L R (1) C 1=L/r=3. 0 – 0. 0036 De (2) 0. 25 C 1 +0. 126 C 2 = 1+2. 97/L –L De * JT Lin (Chin J Oph opt. 2005, 1 - 6; and 145 -151). 0

Shanghai/2005, N=3922 (data) Age 6 -12 De =44. 7 – 15. 1 (L /r)

Shanghai/2005, N=3922 (data) Age 6 -12 De =44. 7 – 15. 1 (L /r) L /r = 2. 96 – 0066 De Lin (theory, 2005) L /r = 3. 0 – (0. 003 L) De =3. 0 – 0. 066 De, for L = 22 mm.

N=167, age>40 De= 35. 8 - 1. 59 L Lin (theory, 2005) De =

N=167, age>40 De= 35. 8 - 1. 59 L Lin (theory, 2005) De = 62 – (2. 76 L – 1. 37 d. S)

Iribarren (Review, 2016) Age L (mm) Cornea Lens 0 16. 8 51 34 Age

Iribarren (Review, 2016) Age L (mm) Cornea Lens 0 16. 8 51 34 Age 0 10 -20 20 -80 T 4. 0 3. 8 – 4. 8 n 1. 45 1. 44 1. 435 c- 1. 415 Lens paradox resolved by the index decrease by age, compensates the power increase due to thickness increase. 10 -20 23. 6 43 19 50 - 80 43 21 - 19

Higher lens power in [short] eye hyperopes lower lens power in hyperopes with eyes

Higher lens power in [short] eye hyperopes lower lens power in hyperopes with eyes with similar length as emmetropes. Refractive group AL/CR Mean SE Lens power Hyperopes with 75 low L/r 2. 86* 2. 89* 23. 13* Hyperopes with 193 normal L/r 3. 0 1. 54* 21. 96* Emmetropes 3. 03 0. 22 22. 54 n= 528 Irribennar (2015)

Myopia predictor (Lin, 2005) Garner (2002, data), axial growth rate (per year) N >

Myopia predictor (Lin, 2005) Garner (2002, data), axial growth rate (per year) N > 0. 12 mm Lin (2005, theory), d. De/d. A = -m(d. L/d. A) – z 2 (d. D 2/d. A) axial lens = m. N - z 2 M solve for myopic predictor rate N = -z 2 M/m. (012, Garner, 2002) Myopia onset age (A*) A* = A + (L 23)/N

Growth (age 0 to 3 yrs), (Data: Lam, 2002) De 3. 5 De drops

Growth (age 0 to 3 yrs), (Data: Lam, 2002) De 3. 5 De drops fast by age 1. 0 0 0 3 Age (year) 6

Ocular power growth (age 0 to 60 yrs) L, Dj 24 Axial length Corneal

Ocular power growth (age 0 to 60 yrs) L, Dj 24 Axial length Corneal power Lens power 17 0 3 20 40 Age (year) 60

Ocular power growth (age 0 to 60 yrs) +4. 0 +2. 0 Presbyopia emmetropia

Ocular power growth (age 0 to 60 yrs) +4. 0 +2. 0 Presbyopia emmetropia 0 0 3 20 40 Age (year) 60

Conclusions (1) Axial growth is trigered by (a) : retina defocusing. (b) lens accommondation

Conclusions (1) Axial growth is trigered by (a) : retina defocusing. (b) lens accommondation (deshaping and translation). (2) Refractive errors resulted from the mismatching of ocular components growth rates De = Do + (d. D 1 + z 2 d. D 2) - md. L initial cornea lens axial (4) Conditions of emmetropization: (a) initial hyperopic [Do > +2. 0 ]; (b) axial power growth larger than the [corneal+ lens] power decrease, with a PERFECT match to the age-0 power. (Do) (5) Myopic on-set can be predicted, but it requires both age growth rate of the axial-length (N) and lens (M). . Garner predictor (N>0. 12 mm) is not sufficient. (6) L/r ration of 3. 0 needs revision to: 3. 0 + 0. 03 L De.

Lens paradox (preby with age) Refractive changes with (dashed) and without cataract Hashemi et

Lens paradox (preby with age) Refractive changes with (dashed) and without cataract Hashemi et al, Cli Exp Ophal (2015) Jongenelen et al, Vis Psy Phys Opt ( 2015)

Eye-Accommodation d. S o Lin’s 2 -component theory (Lin, JRS, 2005) A = A

Eye-Accommodation d. S o Lin’s 2 -component theory (Lin, JRS, 2005) A = A 1 + A 2 A 1 = M d. S A 2 = 83 (1/R’ – 1/R) S M = (0. 9 – 1. 5) (D/mm) A 2 = 1. 6 D (for d. R= 1. 0 mm) R’