LCLSII 1 3 GHz Cryomodule Yuriy Orlov and

  • Slides: 39
Download presentation
LCLS-II, 1. 3 GHz Cryomodule Yuriy Orlov and Tom Peterson (FNAL) Cryomodule Design Review

LCLS-II, 1. 3 GHz Cryomodule Yuriy Orlov and Tom Peterson (FNAL) Cryomodule Design Review 06 June 2014

Outline o Brief look at LCLS-II cryomodule design status o o 2 Cryomodule Layout

Outline o Brief look at LCLS-II cryomodule design status o o 2 Cryomodule Layout Main cryomodule components Assembly procedure 3 D Model & Drafting status Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

1. 3 GHz Cryomodule. Front View • • • Vacuum vessel Interconnection Bellows MC

1. 3 GHz Cryomodule. Front View • • • Vacuum vessel Interconnection Bellows MC warm parts Cryomodule alignment supports Cryomodule instrumentation ports MC pumping line 3 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

1. 3 GHz Cryomodule. Back View • Tuner motor access ports • JT Valve

1. 3 GHz Cryomodule. Back View • Tuner motor access ports • JT Valve with access port 4 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Tuner & JT Valve access Ports o Tuner port, Flange type ISO, ID=12” o

Tuner & JT Valve access Ports o Tuner port, Flange type ISO, ID=12” o JT Valve Port ~325 X 225(mm) 5 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

1. 3 GHz Cryomodule Layout o Vacuum Vessel & Bellows o Coldmass supports o

1. 3 GHz Cryomodule Layout o Vacuum Vessel & Bellows o Coldmass supports o Cold mass • HGR Pipe with bearings • Cavity string ü Cavity with lever tuner ü Splittable quad (conduction cooled)- V. Kashikhin ü BPM (Reentrant or Button) ü Gate valve ü Invar rod 6 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

1. 3 GHz LCLS-II Cryomodule EXCEL Spreadsheet, ED 0001152 7 Y. Orlov, 1. 3

1. 3 GHz LCLS-II Cryomodule EXCEL Spreadsheet, ED 0001152 7 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

1. 3 GHz Cryomodule. Sectional View o Beam Pipe position: ü Cold (X= 0,

1. 3 GHz Cryomodule. Sectional View o Beam Pipe position: ü Cold (X= 0, Y= 0) ü Warm (X= 0. 23 mm, Y= -1. 9 mm) Y X 8 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Cryomodule flow schematic, by Tom Peterson 9 Y. Orlov, 1. 3 GHz Cryomodule design,

Cryomodule flow schematic, by Tom Peterson 9 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

LCLS-II SLAC Tunnel Slope ~0. 5% Downstream End Upstream End BEAM 5694 5758 +28

LCLS-II SLAC Tunnel Slope ~0. 5% Downstream End Upstream End BEAM 5694 5758 +28 mm ID=97. 4 mm -28 mm 2 -phase DS 2 -phase middle 2 -phase US end 1. Axial force inside 2 -Phase pipe (4 Bar)-2980 lb 2. Axial force outside 2 -phase pipe (leak check)-184 lb 10 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Cavity string assembly (after “Clean Room”) o o o 1. 3 GHz Cavity Beam

Cavity string assembly (after “Clean Room”) o o o 1. 3 GHz Cavity Beam pipe Bellows Quad spool piece BPM (Reentrant or Button) Gate Valve Angle valve 11 No magnetic shield Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Cavity string configuration before connection to the “Top” coldmass Assembly o Quadrupole around BP

Cavity string configuration before connection to the “Top” coldmass Assembly o Quadrupole around BP and connected to BP Spool Flange (pins) o End Lever tuner installed o 2 -Phase pipe + Bellows welded o 1 -st layer + 2 -nd layer side cavity magnetic shields installed (not shown) 12 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Coldmass “Top” Assembly o o 13 HGR Pipe (with thermal compensator) Support posts Cryomodule

Coldmass “Top” Assembly o o 13 HGR Pipe (with thermal compensator) Support posts Cryomodule piping system (exclude warm up pipe) Top 40 K shielding with top MLI Blanket (Not shown) Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

40 K Thermal shield o o Top Al Shields Bottom Al Shields “Finger” welds

40 K Thermal shield o o Top Al Shields Bottom Al Shields “Finger” welds Al Extrusion with transition joint 14 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Cavity string connected to HGR Pipe o Connect to HGR Pipe thru C-channel supports

Cavity string connected to HGR Pipe o Connect to HGR Pipe thru C-channel supports with linear needle bearings o Align each cavity and magnet in X and Y using C-clamp bearing adjustment (partial disassembly for end lever tuner) o Z-location for each cavity and quad by connection to invar rod o Final installation and alignment end lever tuners o Installation and welding warm up pipe to each cavity inlet o Finish installation for 2 layers of cavity string magnetic shields 15 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Cavity string & C-Channel supports with needle bearings o Install 5 k & 50

Cavity string & C-Channel supports with needle bearings o Install 5 k & 50 K thermal intercepts for power couplers and Current Leads 16 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Coldmass: middle section o Welding 2 -phase pipe to inlet (4” Tee) of HGR

Coldmass: middle section o Welding 2 -phase pipe to inlet (4” Tee) of HGR Pipe o Prepare to installation of 2 -phase axial force holding rods 17 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Coldmass: downstream end o Welding for downstream He level to HGR Pipe o Connect

Coldmass: downstream end o Welding for downstream He level to HGR Pipe o Connect downstream 2 -phase end pipe to HGR Pipe thru sliding supports o Install conducting cooling intercept between Quad and 2 -phase o Finish installation of DS 2 -phase axial force holding rods 18 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Coldmass: upstream end o Welding for downstream He level to HGR Pipe o Connect

Coldmass: upstream end o Welding for downstream He level to HGR Pipe o Connect downstream 2 -phase end pipe to HGR Pipe thru sliding support o Finish installation of US 2 -phase axial force holding rods 19 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Current Leads & Splittable Quad Magnet o Conduction cooled intercept to 2 -phase He

Current Leads & Splittable Quad Magnet o Conduction cooled intercept to 2 -phase He pipe for Quadrupole o CL-SSR 1 Style, 50 A, quantity-6 (+2 tubes for instrumentation), 2 -thermal intercepts (5 K &50 K) 20 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

SC splittable quadrupole at KEK. Akira Yamamoto. Presentation at TTC meeting at DESY, 26

SC splittable quadrupole at KEK. Akira Yamamoto. Presentation at TTC meeting at DESY, 26 March, 2014 21 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Cold Mass assembly (before insertion in vacuum vessel) o 40 K Al shield installed

Cold Mass assembly (before insertion in vacuum vessel) o 40 K Al shield installed and finger welded o Wrapped with 30 of MLI (prepare blanket) 22 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

LCLS-II Vacuum Vessel o Tube OD- 38” (965. 2 mm), tube Wall-. 375” (9.

LCLS-II Vacuum Vessel o Tube OD- 38” (965. 2 mm), tube Wall-. 375” (9. 52 mm), ASTM A 516 STEEL o Vacuum vessel length- 11400 mm o Final machining: MC port and cold mass SLD support surfaces 23 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

LSLS-II Power Coupler (for information) TTF Style XFEL Style Responsible: SLAC 24 Y. Orlov,

LSLS-II Power Coupler (for information) TTF Style XFEL Style Responsible: SLAC 24 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

LCLS-II, 1. 3 GHz Cryomodules connection 25 Y. Orlov, 1. 3 GHz Cryomodule design,

LCLS-II, 1. 3 GHz Cryomodules connection 25 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Cross Section of LCLS-II Cryomodule in SLAC Housing (from Ginger) 26 Y. Orlov, 1.

Cross Section of LCLS-II Cryomodule in SLAC Housing (from Ginger) 26 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

LCLS-II, 1. 3 GHz Cryomodule 3 D model and Drawings status & plan 1.

LCLS-II, 1. 3 GHz Cryomodule 3 D model and Drawings status & plan 1. 3 GHz Cryomodule 3 D model, F 10009945 (ready for drafting-70%) • DWG’s for Cavity He Vessel, End Lever Tuner, -done • Try to use (with small update) ~30% of existing drawings of Cryomodule #3 • This month plan to start to create drawings for: -1. 3 cavity string Assembly (~30 DWG’s) -Vacuum Vessel (~40 DWG’s) -HGR Pipe (~30 DWG’s) (? )-50 K aluminum shielding (~50 DWG’s) • 27 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Additional Slides 28 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Additional Slides 28 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

2 -phase pipe connection to HGR Pipe 29 Y. Orlov, 1. 3 GHz Cryomodule

2 -phase pipe connection to HGR Pipe 29 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Lever tuner preparation for Cavity String alignment on HGR Pipe 30 Y. Orlov, 1.

Lever tuner preparation for Cavity String alignment on HGR Pipe 30 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

1. 3 GHz Cavity on the Clean Room Posts 31 Y. Orlov, 1. 3

1. 3 GHz Cavity on the Clean Room Posts 31 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

32 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

32 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

33 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

33 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Cavity string with HGR Pipe XFEL 34 Y. Orlov, 1. 3 GHz Cryomodule design,

Cavity string with HGR Pipe XFEL 34 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

35 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

35 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

End Laver Tuner & US Gate valve 36 Y. Orlov, 1. 3 GHz Cryomodule

End Laver Tuner & US Gate valve 36 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

End lever tuner 37 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

End lever tuner 37 Y. Orlov, 1. 3 GHz Cryomodule design, 06 June 2014

Conclusion for design features in LCLS-II cryomodules • Slightly larger nozzle from helium vessel

Conclusion for design features in LCLS-II cryomodules • Slightly larger nozzle from helium vessel to 2 -phase pipe § • Increase from 55 mm to about 70 mm Slightly larger 2 -phase pipe § § Retain option for 1. 8 K in all piping Increase from 72 mm to about 90 mm Separate liquid baths for each cryomodule No 5 Kelvin thermal radiation shield Dual inlet ports on each cavity for cool-down and warm-up (keep all cool-down options open!) • Careful attention to management of liquid helium with 0. 5% slope • Considering new tuner design with access ports for repair/replacement of piezos, motors, and/or mechanism • • • 38 Peterson, CW cryomodule design, 25 March 2014

CW design considerations -- cryogenic piping • Pipes sized for steady-state heat transport (2

CW design considerations -- cryogenic piping • Pipes sized for steady-state heat transport (2 K heat flux limits), steady-state helium flow, and for non-steady conditions, e. g. , emergency venting § § • Pressure stability factors § § 39 Low allowable pressure on RF cavity may be significant constraint on piping due to high volumetric flows for loss of vacuum venting Vapor velocity in 2 -phase pipe low so as not to entrain liquid droplets (<5 meters/sec) Avoid dead-headed lines which are warm at one end Attention to valve conditions when closed (may provide heat source or warm end of closed pipe) Liquid volume and vapor volume may serve as buffers for pressure change Evaporation or condensation rates serve to buffer pressure changes as a function of liquid surface area Peterson, CW cryomodule design, 25 March 2014