Today Topics • Period 1 – – – Course Outlines Course Web Site Part I Chapter 1 Vector (Review) Breaks Part I Chapter 1 Vector (Review) • Assignment: – ยงไมมการบาน – Download MATLAB Tutorial 1 -5 และลองทำ Exercise ด • Next Week ตอ Vector และ Chapter 2 เรอง Matrix
CPE 332 T 1 -57 Wk 1
Definition of Vector
Definition of Vector
Addition and Substraction
r
Component Vector
Component Vector in Cartesian Coordinate
Component Vector in Cartesian Coordinate •
Component Vector in Cartesian Coordinate •
Position Vector และ Addition-Subtraction using Component Vector
Any vectors in Cartesian Coordinates • Given 2 Points, P(x 1, y 1, z 1) and Q(x 2, y 2, z 2) – We have OP+PQ=OQ – Then PQ = OQ – OP • PQ = x 2 i+y 2 j+z 2 k – x 1 i+y 1 j+z 1 k • PQ =(x 2 -x 1)i+(y 2 -y 1)j+(z 2 -z 1)k Z Q(x 2, y 2, z 2) O X Y P(x 1, y 1, z 1)
Any vectors in Cartesian Coordinates • Given 2 Points, P(x 1, y 1, z 1) and Q(x 2, y 2, z 2) – PQ =(x 2 -x 1)i+(y 2 -y 1)j+(z 2 -z 1)k – Also magnitude or length of vector is the distance between those 2 points (Euclidian Distance) • PQ = (x 2 -x 1)2+(y 2 -y 1)2+(z 2 -z 1)2 Z Q(x 2, y 2, z 2) O X Y P(x 1, y 1, z 1)
Direction Cosine • Position vector OP – Magnitude equal to OP = x 2+y 2+z 2 – Direction: cos i+cos j+cos k • Called Direction Cosine We have cos =F 1/OP cos =F 2/OP cos =F 3/OP F 3 F 2 F 1
Direction Cosine and Direction Ratio
Direction Cosine and Direction Ratio
Example • Given points P 1(2, -4, 5) and P 2(1, 3, -2), find the vector P 1 P 2 and its magnitude and direction – OP 1 = 2 i-4 j+5 k and OP 2 = i+3 j-2 k – P 1 P 2=OP 2 -OP 1=-i+7 j-7 k – P 1 P 2 = 1+49+49= 99 – Cos = -1/ 99 then = 95. 8 degree – Cos = 7/ 99 then = 45. 3 degree – Cos = -7/ 99 then = 134. 7 degree
Direction Cosine and Direction Ratio
Next Week • Vector Product – Scalar Product(Dot) – Vector Product(Cross) • Chapter II: MATRICES • HW II