Photochemistry hn Photochemistry O hn T 1 Photochemistry

  • Slides: 36
Download presentation
Photochemistry hn

Photochemistry hn

Photochemistry O hn T 1

Photochemistry O hn T 1

Photochemistry O hn T 1 Acrolein

Photochemistry O hn T 1 Acrolein

T(n, p*) T(p, p*) P. E. Twisting coordinate

T(n, p*) T(p, p*) P. E. Twisting coordinate

T 1 T 2 T 1(n, p*) T 1(p, p*) P. E. Twisting coordinate

T 1 T 2 T 1(n, p*) T 1(p, p*) P. E. Twisting coordinate T 1

S 1(n, p*) T 1 T 2 T 1(n, p*) T 1(p, p*) S

S 1(n, p*) T 1 T 2 T 1(n, p*) T 1(p, p*) S 0 T 1

Survey at 0. 05 -nm resolution (Cary-5 E) Acrolein (84 T) in 10 -cm

Survey at 0. 05 -nm resolution (Cary-5 E) Acrolein (84 T) in 10 -cm cell at room temperature 1 S 1(n, p*)← S 0 T 1(n, p*)← S 0 1 Prof. William Polik, Hope College

Survey at 0. 05 -nm resolution (Cary-5 E) Acrolein (84 T) in 10 -cm

Survey at 0. 05 -nm resolution (Cary-5 E) Acrolein (84 T) in 10 -cm cell at room temperature 1 S 1(n, p*)← S 0 T 1(n, p*)← S 0 S 1(n, p*)← S 0 1 Prof. William Polik, Hope College

Telescope Dye Laser 355 nm 385 nm, 0. 2 m. J/pulse Photomultiplier Ringdown Cell

Telescope Dye Laser 355 nm 385 nm, 0. 2 m. J/pulse Photomultiplier Ringdown Cell 50 W Computer Oscilloscope Nd: YAG Laser 10 Hz

Telescope Dye Laser 355 nm 385 nm, 0. 2 m. J/pulse Photomultiplier Ringdown Cell

Telescope Dye Laser 355 nm 385 nm, 0. 2 m. J/pulse Photomultiplier Ringdown Cell 50 W Computer Nd: YAG Laser 10 Hz Oscilloscope Jordan Valve

Survey at 0. 05 -nm resolution (Cary-5 E) Acrolein (84 T) in 10 -cm

Survey at 0. 05 -nm resolution (Cary-5 E) Acrolein (84 T) in 10 -cm cell at room temperature 1 S 1(n, p*)← S 0 T 1(n, p*)← S 0 S 1(n, p*)← S 0 1 Prof. William Polik, Hope College

CRD Survey Spectrum Room Temp 000 T 1(n, p*)← S 0 000 S 1(n,

CRD Survey Spectrum Room Temp 000 T 1(n, p*)← S 0 000 S 1(n, p*)← S 0

CRD Survey Spectrum Room Temp 000 Jet-Cooled T 1(n, p*)← S 0 S 1(n,

CRD Survey Spectrum Room Temp 000 Jet-Cooled T 1(n, p*)← S 0 S 1(n, p*)← S 0

CRD Survey Spectrum Room Temp 000 Jet-Cooled T 1(n, p*)← S 0 S 1(n,

CRD Survey Spectrum Room Temp 000 Jet-Cooled T 1(n, p*)← S 0 S 1(n, p*)← S 0

T 1(n, p*)← S 0 000 band

T 1(n, p*)← S 0 000 band

T 1(n, p*)← S 0 000 band

T 1(n, p*)← S 0 000 band

Hund’s Case (b)

Hund’s Case (b)

Singlet-Triplet Selection Rules DJ= ± 1 DN=0, ± 1, ± 2 b a c

Singlet-Triplet Selection Rules DJ= ± 1 DN=0, ± 1, ± 2 b a c Erot ≈ BN(N+1) + Ka 2(A – B) DJ= 0, ± 1 DKa= 0, ± 1, ± 2 DN=0, ± 1, ± 2

Singlet-Triplet Selection Rules DJ= ± 1 DN=0, ± 1, ± 2 b a c

Singlet-Triplet Selection Rules DJ= ± 1 DN=0, ± 1, ± 2 b a c Erot ≈ BN(N+1) + Ka 2(A – B) DJ= 0, ± 1 DKa= 0, ± 1, ± 2 DN=0, ± 1, ± 2

T 1(n, p*)← S 0 000 band

T 1(n, p*)← S 0 000 band

T 1(n, p*)← S 0 000 band Hot bands

T 1(n, p*)← S 0 000 band Hot bands

Room Temp Jet-Cooled

Room Temp Jet-Cooled

b a c Jet-Cooled Erot ≈ BN(N+1) + Ka 2(A – B)

b a c Jet-Cooled Erot ≈ BN(N+1) + Ka 2(A – B)

K″ = 01 2 3 4… sub-band origins, DKa =0 b a c Jet-Cooled

K″ = 01 2 3 4… sub-band origins, DKa =0 b a c Jet-Cooled Erot ≈ BN(N+1) + Ka 2(A – B)

STROTA 1 K″ = 3 Sub-band head, DN = +2, N″ ~ 45 Erot

STROTA 1 K″ = 3 Sub-band head, DN = +2, N″ ~ 45 Erot ≈ BN(N+1) + Ka 2(A – B) Jet-Cooled 1 Richard Judge et al.

STROTA K″ = 3 5 6 7 DKa=0, DN=+2 Erot ≈ BN(N+1) + Ka

STROTA K″ = 3 5 6 7 DKa=0, DN=+2 Erot ≈ BN(N+1) + Ka 2(A – B) Jet-Cooled 8

STROTA

STROTA

Ka″ = 3 heads 4 DN=+1 DN=+2 5 10 6 7 8 9 Ka″

Ka″ = 3 heads 4 DN=+1 DN=+2 5 10 6 7 8 9 Ka″ = 8 head

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0.

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0. 1554 cm– 1 C″ = 0. 1415 cm– 1 A′ = 1. 662 cm– 1 B′ = 0. 1485 cm– 1 C′ = 0. 1363 cm– 1 Ka″ = 3 heads DN=+1 DN=+2 5 10 6 7 8 9 Ka″ = 8 head

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0.

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0. 1554 cm– 1 C″ = 0. 1415 cm– 1 A′ = 1. 662 cm– 1 B′ = 0. 1485 cm– 1 C′ = 0. 1363 cm– 1 Room Temp exp sim Jet-Cooled

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0.

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0. 1554 cm– 1 C″ = 0. 1415 cm– 1 A′ = 1. 662 cm– 1 B′ = 0. 1485 cm– 1 C′ = 0. 1363 cm– 1 Trot = 63 K GLor = 0. 20 cm-1 exp sim

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0.

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0. 1554 cm– 1 C″ = 0. 1415 cm– 1 A′ = 1. 662 cm– 1 B′ = 0. 1485 cm– 1 C′ = 0. 1363 cm– 1 Trot = 63 K GLor = 0. 20 cm-1 T 1(n, p*) t = 25 ps exp sim

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0.

Microwave Spectroscopy T 1(n, p*) A″ = 1. 580 cm– 1 B″ = 0. 1554 cm– 1 C″ = 0. 1415 cm– 1 A′ = 1. 662 cm– 1 B′ = 0. 1485 cm– 1 C′ = 0. 1363 cm– 1 Trot = 63 K GLor = 0. 20 cm-1 T 1(n, p*) t = 25 ps S 1(n, p*)1 t = 2 ps exp sim 1 K. W. Paulisse et al. , J. Chem. Phys. v. 113, p. 184 (2000).

S 1(n, p*) T 1 T 2 T 1(n, p*) T 1(p, p*) S

S 1(n, p*) T 1 T 2 T 1(n, p*) T 1(p, p*) S 0 T 1

Acknowledgements • NSF (CHE-0848615) • Camille and Henry Dreyfus Foundation, Inc. (Henry Dreyfus Teacher-Scholar

Acknowledgements • NSF (CHE-0848615) • Camille and Henry Dreyfus Foundation, Inc. (Henry Dreyfus Teacher-Scholar Award) • Prof. Richard Judge (UW-Parkside) • Prof. William Polik (Hope College)