ESR 2 Process Cycle Design ESR 2 Preliminary

  • Slides: 13
Download presentation
ESR 2 Process Cycle Design ESR 2 Preliminary Design Review June 19, 2019

ESR 2 Process Cycle Design ESR 2 Preliminary Design Review June 19, 2019

Presentation Outline • • • BACKGROUND EXISTING EQUIPMENT AND CAPACITY MODIFIED CAPACITY PROCESS CYCLES

Presentation Outline • • • BACKGROUND EXISTING EQUIPMENT AND CAPACITY MODIFIED CAPACITY PROCESS CYCLES CONSIDERED FINAL DESIGN CYCLE SUMMARY

Background ESR 1 Complex: 3 x Warm Compressors 1. 5 k. W Cold Box

Background ESR 1 Complex: 3 x Warm Compressors 1. 5 k. W Cold Box Valve Box - Experimental Hall Distribution Cans - CHL ESR TL Bayonet(s) - GHe Supply from CHL - Existing LHe Dewar SR CH L E TL ESR 2 ESR 1 Proposed ESR 2 Complex: 4 x Warm Compressors 4. 0 k. W Cold Box CBX Distribution Recovery System GHe Storage Tank(s) LN Storage LHe Dewar

ASST-A Cryogenic System History: § Originally procured in 1992 by SSCL Magnet Testing Lab

ASST-A Cryogenic System History: § Originally procured in 1992 by SSCL Magnet Testing Lab for Magnet String Test § Preliminary concept of Floating pressure process (Ganni Cycle) Developed and successfully used for the variable capacity operation to recover after the magnet string quench test § Never been used after SSCL cancellation Majority of the components already present at JLab

Existing Equipment and Capacity Features § Compressor System (Sullair) 2 x 186 k. W

Existing Equipment and Capacity Features § Compressor System (Sullair) 2 x 186 k. W (250 hp) 1 st stage 2 x 522 k. W (700 hp) 2 nd stage § Four turbo-expanders § Eleven heat exchangers Grouped into six brazed aluminium cores § Two 80 K beds, One 20 K bed § 4. 0 k. W 4. 5 K cold box Capacity (tested) 4. 5 K Refrigeration: 2. 0 k. W AND 4. 5 K Liquefaction: 20 g/s OR 4. 5 K Refrigeration: 4. 0 k. W OR 4. 5 K Liquefaction: 37 g/s (Design) § LN Consumption: 125 gph (Design, Max. Liquefaction) 70 gph (Design, ½ Capacity R+L)

ESR 2 Future Loads 12 Ge. V Loads: Expected 12 Ge. V Era Cryogenic

ESR 2 Future Loads 12 Ge. V Loads: Expected 12 Ge. V Era Cryogenic Loads (Cumulative) Fall 2017 – Present (Up to FY 2019)1 4. 5 K Refrigeration: 4. 5 K Liquefaction (Lead Cooling): 15 K Target: 0. 8 k. W 7. 54 g/s (0. 75 k. W Equivalent 4. 5 K Refrigeration) 1. 0 k. W (0. 35 k. W Equivalent 4. 5 K Refrigeration) Total: 1. 90 k. W @ 4. 5 K ___________________________________________ Expected (? ) Loads (2020)1 4. 5 K Refrigeration: 4. 5 K Liquefaction (Lead Cooling): 15 K Target: 0. 80 k. W 7. 54 g/s (0. 75 k. W Equivalent 4. 5 K Refrigeration) 2. 0 k. W (0. 70 k. W Equivalent 4. 5 K Refrigeration) Total: 2. 25 k. W @ 4. 5 K ___________________________________________ Expected MOELLER Load (2023 -2026)1 4. 5 K Refrigeration: 4. 5 K Liquefaction (Lead Cooling): 15 K Target: 0. 48 k. W 4. 94 g/s (0. 50 k. W Equivalent 4. 5 K Refrigeration) 6. 00 k. W (2. 0 k. W Equivalent 4. 5 K Refrigeration) Total: 3. 0 k. W @ 4. 5 K 1 Per ESR 2 Distribution System and Support for Moeller Experiment (D. Kashy, Dated 12 September, 2018)

Process Cycles Considered • 15 K Target load broken down into 5 k. W

Process Cycles Considered • 15 K Target load broken down into 5 k. W for MOELLER and 1 k. W for other experiments • Turbine and HX parameters from previous testing of cold box • Developed process model for seven supply points for the 15 K load and 4 return points

Process Cycles Considered • Initial modeling showed that return to point (2) required higher

Process Cycles Considered • Initial modeling showed that return to point (2) required higher CHL support flow due to return conditions being warmer than injection point • Return conditions set to point (1) on either LP or MP

Comparison of Various Target Supply and Return Conditions Return "35 K" LP "35 K"

Comparison of Various Target Supply and Return Conditions Return "35 K" LP "35 K" MP MOELLER Supply Hall C supply CHL support flow (g/s) Cost for 2 years Available DP CHL support Available DP MOELLER (Atm) Hall C (Atm) flow (g/s) Cost for 2 years MOELLER (Atm) Hall C (Atm) T 2 outlet w/ new moller transferline T 2 outlet 0 $1, 170, 000 1. 52 T 2 outlet w/ new moller transferline 15 K HP 0 $1, 190, 000 1. 52 14. 9 0 $1, 160, 000 T 2 outlet w/ new moller transferline T 3 inlet HP 0 $1, 250, 000 1. 5 14. 9 0 15 K HP 2 $1, 750, 000 14. 9 2 15 K HP T 3 inlet HP 2 $1, 770, 000 14. 9 15 K HP T 4 inlet HP 2 $1, 780, 000 14. 9 T 3 inlet HP 15 K HP 5 $2, 140, 000 14. 9 T 3 inlet HP 4 $2, 060, 000 14. 9 1. 52 13. 5 $1, 230, 000 1. 5 13. 5 $1, 570, 000 13. 2 2 $1, 590, 000 13. 2 2 $1, 620, 000 13. 2 14. 9 5 $1, 920, 000 13. 2 14. 9 4 $1, 930, 000 13. 2 T 3 inlet HP T 4 inlet HP 4 $2, 070, 000 14. 9 4 $1, 950, 000 13. 2 T 3 outlet , 4 Atm 15 K HP 3 $1, 930, 000 2. 9 14. 9 3 $1, 810, 000 1. 1 13. 2 T 3 outlet , 4 Atm T 3 inlet HP 3 $1, 960, 000 2. 9 14. 9 3 $1, 780, 000 1. 1 13. 2 T 3 outlet , 4 Atm CHL 8 $2, 400, 000 2. 9 1. 9 8 $2, 310, 000 1. 43 1. 9 T 3 outlet , 5 Atm CHL 8. 5 $2, 460, 000 3. 9 1. 9 9 $2, 430, 000 2. 43 1. 9 T 3 outlet , 4 Atm T 4 inlet HP 8 $2, 380, 000 2. 9 14. 9 8 $2, 280, 000 1. 4 13. 2 12 $2, 780, 000 1. 33 2. 9 T 4 outlet 4 K direct from ESR Supply Point T 2 outlet (green) 15 K HP (blue) T 3 inlet HP (red) T 3 outlet , 4 Atm T 4 inlet HP (orange) T 4 outlet 4 K direct from ESR Temperature (K) 13 14 12 8 8 6 4. 5 Pressure (atm) 2. 5 -3. 5 16 16 4 -5 4 14. 5 MOELLER flow (g/s) 127 122 84 71 60 53 47

Final Design Cycle Return "35 K" LP "35 K" MP MOELLER Supply Hall C

Final Design Cycle Return "35 K" LP "35 K" MP MOELLER Supply Hall C supply CHL support flow (g/s) Cost for 2 years Available DP CHL support Available DP MOELLER (Atm) Hall C (Atm) flow (g/s) Cost for 2 years MOELLER (Atm) Hall C (Atm) T 2 outlet w/ new moller transferline T 2 outlet 0 $1, 170, 000 1. 52 T 2 outlet w/ new moller transferline 15 K HP 0 $1, 190, 000 1. 52 14. 9 0 $1, 160, 000 T 2 outlet w/ new moller transferline T 3 inlet HP 0 $1, 250, 000 1. 5 14. 9 0 15 K HP 2 $1, 750, 000 14. 9 2 15 K HP T 3 inlet HP 2 $1, 770, 000 14. 9 15 K HP T 4 inlet HP 2 $1, 780, 000 14. 9 T 3 inlet HP 15 K HP 5 $2, 140, 000 14. 9 T 3 inlet HP 4 $2, 060, 000 14. 9 1. 52 13. 5 $1, 230, 000 1. 5 13. 5 $1, 570, 000 13. 2 2 $1, 590, 000 13. 2 2 $1, 620, 000 13. 2 14. 9 5 $1, 920, 000 13. 2 14. 9 4 $1, 930, 000 13. 2 T 3 inlet HP T 4 inlet HP 4 $2, 070, 000 14. 9 4 $1, 950, 000 13. 2 T 3 outlet , 4 Atm 15 K HP 3 $1, 930, 000 2. 9 14. 9 3 $1, 810, 000 1. 1 13. 2 T 3 outlet , 4 Atm T 3 inlet HP 3 $1, 960, 000 2. 9 14. 9 3 $1, 780, 000 1. 1 13. 2 T 3 outlet , 4 Atm CHL 8 $2, 400, 000 2. 9 1. 9 8 $2, 310, 000 1. 43 1. 9 T 3 outlet , 5 Atm CHL 8. 5 $2, 460, 000 3. 9 1. 9 9 $2, 430, 000 2. 43 1. 9 T 3 outlet , 4 Atm T 4 inlet HP 8 $2, 380, 000 2. 9 14. 9 8 $2, 280, 000 1. 4 13. 2 12 $2, 780, 000 1. 33 2. 9 T 4 outlet 4 K direct from ESR Supply Point T 2 outlet (green) 15 K HP (blue) T 3 inlet HP (red) T 3 outlet , 4 Atm T 4 inlet HP (orange) T 4 outlet 4 K direct from ESR Temperature (K) 13 14 12 8 8 6 4. 5 Pressure (atm) 2. 5 -3. 5 16 16 4 -5 4 14. 5 MOELLER flow (g/s) 127 122 84 71 60 53 47 • MOELLER supply from T 3 HP inlet, Hall supply from 15 K HP • Both return to MP header • Chosen for lower MOELLER supply flow while minimizing electrical costs and CHL support flow and having 13 atm d. P

T-S Diagram of Design Cycle

T-S Diagram of Design Cycle

Summary • Design of the upcoming ESR 2 plant based off of existing cold

Summary • Design of the upcoming ESR 2 plant based off of existing cold box and compressors and upcoming loads from MOELLER experiment • Modelled ESR 2 cold box to find the best way of supplying target flow for MOELLER and halls • After discussions with Physics, chose how to supply target flow without modifying existing Hall transfer lines • Will use the values for this mode in sizing other piping for the plant • Other presentations will discuss what modifications need to be made to run in this configuration

Questions?

Questions?