Association EuratomCEA First Modelling of JT60 SA G

  • Slides: 17
Download presentation
Association Euratom-CEA First Modelling of JT-60 SA G. Giruzzi, M. Schneider E. Barbato CEA,

Association Euratom-CEA First Modelling of JT-60 SA G. Giruzzi, M. Schneider E. Barbato CEA, IRFM (France) ENEA (Italy) • METIS simulations of JT-60 SA scenarios • First CRONOS run (based on METIS results) • First LHCD calculations by ASTRA-FRTC code Meeting ISM, Cadarache G. Giruzzi 11/03/2011 1

METIS simulation of JT-60 SA Scenario 5 -1 (high b. N, steady-state) /1 Meeting

METIS simulation of JT-60 SA Scenario 5 -1 (high b. N, steady-state) /1 Meeting ISM, Cadarache G. Giruzzi 11/03/2011 Association Euratom-CEA 2

METIS simulation of JT-60 SA Scenario 5 -1 (high b. N, steady-state) /2 Meeting

METIS simulation of JT-60 SA Scenario 5 -1 (high b. N, steady-state) /2 Meeting ISM, Cadarache G. Giruzzi 11/03/2011 Association Euratom-CEA 3

METIS simulation of JT-60 SA Scenario 5 -1 (high b. N, steady-state) /3 Meeting

METIS simulation of JT-60 SA Scenario 5 -1 (high b. N, steady-state) /3 Meeting ISM, Cadarache G. Giruzzi 11/03/2011 Association Euratom-CEA 4

Association Euratom-CEA METIS simulation of JT-60 SA Scenario 5 -1 , but PECCD =

Association Euratom-CEA METIS simulation of JT-60 SA Scenario 5 -1 , but PECCD = 14 MW Meeting ISM, Cadarache G. Giruzzi 11/03/2011 5

METIS simulation of JT-60 SA Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /1

METIS simulation of JT-60 SA Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /1 Meeting ISM, Cadarache G. Giruzzi 11/03/2011 Association Euratom-CEA 6

METIS simulation of JT-60 SA Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /2

METIS simulation of JT-60 SA Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /2 Meeting ISM, Cadarache G. Giruzzi 11/03/2011 Association Euratom-CEA 7

METIS simulation of JT-60 SA Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /3

METIS simulation of JT-60 SA Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /3 Meeting ISM, Cadarache G. Giruzzi 11/03/2011 Association Euratom-CEA 8

First CRONOS simulation Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /1 Association Euratom-CEA

First CRONOS simulation Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /1 Association Euratom-CEA M. Schneider Meeting ISM, Cadarache G. Giruzzi 11/03/2011 9

First CRONOS simulation Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /2 Meeting ISM,

First CRONOS simulation Scenario 2 (H-mode, H=1. 3, Ip=5. 5 MA) /2 Meeting ISM, Cadarache G. Giruzzi 11/03/2011 Association Euratom-CEA 10

Association Euratom-CEA LHCD calculations (E. Barbato, ENEA) B=1. 7 T I=2. 3 MA k=1.

Association Euratom-CEA LHCD calculations (E. Barbato, ENEA) B=1. 7 T I=2. 3 MA k=1. 9 d=. 4 f=3. 7 Ghz n|| = 2. 5 -3 PL = 2 MW Meeting ISM, Cadarache G. Giruzzi 11/03/2011 11

ACCESSIBILITY FOR THE HIGH BN SCENARIO n|| window between n||ACC (low boundary -non accessible

ACCESSIBILITY FOR THE HIGH BN SCENARIO n|| window between n||ACC (low boundary -non accessible region) and Association Euratom-CEA n||ELD (upper boundary- absorption region ) n||ACC ~ 2. 5 in this scenario Meeting ISM, Cadarache G. Giruzzi 11/03/2011 12

Association Euratom-CEA High b. N- full CD scenario n||Launch=2. 5, PABS=1. 2 MW PLH-ABS=1.

Association Euratom-CEA High b. N- full CD scenario n||Launch=2. 5, PABS=1. 2 MW PLH-ABS=1. 2 MW ILH=132 KA Meeting ISM, Cadarache G. Giruzzi 11/03/2011 13

Association Euratom-CEA High BN- full CD scenario n||Launch=3, PABS=1. 8 MW PLH-ABS=1. 8 MW

Association Euratom-CEA High BN- full CD scenario n||Launch=3, PABS=1. 8 MW PLH-ABS=1. 8 MW ILH= 219 k. A Meeting ISM, Cadarache G. Giruzzi 11/03/2011 14

Association Euratom-CEA Density profile variation Ide ne prof. Modified ne prof. • Lower edge

Association Euratom-CEA Density profile variation Ide ne prof. Modified ne prof. • Lower edge density • Better accessibility Meeting ISM, Cadarache G. Giruzzi 11/03/2011 15

Possible work on JT-60 SA scenarios Association Euratom-CEA • Simulations of JT-60 SA scenarios

Possible work on JT-60 SA scenarios Association Euratom-CEA • Simulations of JT-60 SA scenarios should be based on the two machines that are the most similar, for size and configuration: JT-60 U and JET • First steps: Ø Ø Ø Ø define reference JT-60 U and JET shots (H-mode, hybrid, advanced) give access to databases (or create a common database) these shots should be mainly based on NBI H&CD establish a simulation data exchange method define transport, pedestal, rotation models benchmark actuator computations (should be OK due to ITPA work, but…) run predictive simulations for the reference shots • Try to find a unified modelling framework that works for both machines: this should give the maximum confidence for prediction of JT-60 SA • fast parameter range exploration with METIS (0. 5 code) • Run predictive simulations fo JT-60 SA with both JA and EU codes • For the predicted scenarios, perform linear MHD analysis; for the most interesting cases, try non-linear MHD analysis Meeting ISM, Cadarache G. Giruzzi 11/03/2011 16

#1 #2 #3 #4 #5 #6 (1) Full Current Inductive DN, 41 MW Full

#1 #2 #3 #4 #5 #6 (1) Full Current Inductive DN, 41 MW Full Current Inductive SN, 30 MW High density ITER like Inductive High b. N full-CD High b. N 300 s Plasma current, Ip (MA) 5. 5 4. 6 2. 3 2. 0 Toroidal field, Bt (T) 2. 25 2. 28 1. 71 1. 41 ~3 ~3 ~5. 6 ~4 2. 96/1. 18 2. 93/1. 14 2. 97/1. 11 Aspect ratio A 2. 5 2. 6 2. 7 Elongation, x 1. 95 1. 87 1. 86 1. 81 1. 92 1. 91 Triangularity, x 0. 53 0. 50 0. 41 0. 51 Shaping factor, S 6. 7 6. 3 6. 2 5. 7 6. 8 6. 4 132 131 122 124 7. 3 6. 9 Normalised beta, b. N 3. 1 2. 6 2. 8 4. 1 3. 0 Electron density, (1019 m-3) 6. 3 10. 9. 1 5. 0 2. 0 13/0. 5 13/0. 8 11/0. 8 5. 9/0. 85 5. 2/0. 39 22 22 21 18 8. 1 3. 8 41 10/24/7 30 10/20/- 34 10/24/- 37 10/20/7 13. 2/6/4 Thermal confinement time, E, th (s) 0. 54 0. 68 0. 52 0. 22 0. 3 HH 98 (v. 2) 1. 3 1. 1 1. 2 1. 3 Vl (V) 0. 06 0. 15 0. 12 0 0. 02 Available flux at flat-top (Wb) <~9 <~9 <~17 - >~8 Neutron production rate, Sn (n/s) 1. 3 1017 7. 0 1016 6. 7 1016 4. 4 1016 1. 2 1016 Nominal repetition time for 60 s flattop 1800 1800 3000 Nominal repetition time for 100 s flattop 3000 3000 Nominal repetition time after disruption (s) 4000 4000 q 95 R/a (m/m) Volume (m 3) Cross-section (m 2) Greenwald density, n. GW (1019 m-3)/ f. GW Plasma thermal energy, Wth (MJ) Padd (MW) PNNB/PPNB/PEC (MW)