RR LR MAGNETS Davide Tommasini RR 10 Ge

  • Slides: 16
Download presentation
RR + LR MAGNETS Davide Tommasini Ø RR: 10 Ge. V Linac + 10

RR + LR MAGNETS Davide Tommasini Ø RR: 10 Ge. V Linac + 10 -60 Ge. V Ring magnets Ø LR: 10 Ge. V Linac + 10 -60 Ge. V Arc magnets Ø Present experimental work Ø Conclusion Davide Tommasini LHe. C workshop: Warm Magnets 12 November 2010

RR: 10 Ge. V Linac Requirements for Quadrupoles Number of magnets 37 Aperture radius

RR: 10 Ge. V Linac Requirements for Quadrupoles Number of magnets 37 Aperture radius 70 mm Field gradient 10 T/m Magnetic Length 250 mm Operation D. C. Requirements for Correctors Number of magnets Free aperture Field induction Magnetic Length Operation Davide Tommasini 37 140 x 140 mm x mm 40 m. T 250 mm pulsed up to 10 ms LHe. C workshop: Warm Magnets 12 November 2010

RR: Linac Correctors Parameters for Correctors Number of magnets Free aperture Field induction Magnetic

RR: Linac Correctors Parameters for Correctors Number of magnets Free aperture Field induction Magnetic Length Yoke aperture 37 140 x 14 0 mm x mm 25 m. T 400 mm 200 x 20 0 mm x mm Yoke length 250 mm Total length 350 mm Weight 100 kg Number of turns 2*100 per circuit Current 40 A Current density 1. 5 A/mm 2 Resistance/circuit 0. 1 m Power/circuit 160 W 10 m. H Inductance/circuit Davide Tommasini LHe. C workshop: Warm Magnets 12 November 2010

RR: Linac Quadrupoles Parameters for Quadrupoles Number of magnets 37 Aperture radius 70 mm

RR: Linac Quadrupoles Parameters for Quadrupoles Number of magnets 37 Aperture radius 70 mm Field gradient 10 T/m Magnetic Length 250 mm Yoke length 200 mm Total length 350 mm Weight 300 kg Number of turns/pole Current density Resistance Power Inductance Field error Davide Tommasini 44 500 A 5 A/mm 2 24 m 6 k. W 12 m. H 540 mm it could be more compact, but a bit longer <± 5· 10 -4 @ r=10 mm LHe. C workshop: Warm Magnets 12 November 2010

RR: 10 -60 Ge. V Ring Magnets Requirements for Bending Number of magnets 3080

RR: 10 -60 Ge. V Ring Magnets Requirements for Bending Number of magnets 3080 Free aperture 90 x 40 Field induction 127 -763 Magnetic Length 5350 Field quality ± 2· 10 -4 in GFR ± 10 Hx 6 V Field reproducibility @ inj better than ± 0. 1 mm x mm Gauss mm mm x mm Gauss Requirements for Arc QF Requirements for Arc QD Number of magnets Aperture radius Field gradient Magnetic Length 368 >20 10. 28 1000 mm T/m m Requirements for I-BP QF Number of magnets Aperture radius Field gradient Magnetic Length Davide Tommasini 97 >20 18 1000 mm T/m m 368 >20 8. 40 1000 mm T/m mm Requirements for I-BP QD Number of magnets Aperture radius Field gradient LHe. C workshop: Magnetic Warm Magnets. Length 97 >20 18 700 mm T/m mm 2010 12 November

RR: Ring Bending Parameters for Bending Beam Energy [Ge. V] 60 Magnetic Length [m]

RR: Ring Bending Parameters for Bending Beam Energy [Ge. V] 60 Magnetic Length [m] 5. 35 Magnetic field [Gauss] 763 Number of magnets 3080 30 cm Weight [kg] Vertical aperture [mm] 40 Pole width [mm] 150 Number of coils 2 Number of turns/coil 1 Current [A] Conductor material 1300 aluminum Magnet Inductance [m. H] 0. 15 Magnet Resistance [m ] 0. 20 Power per magnet [W] 340 Cooling Davide Tommasini air LHe. C workshop: Warm Magnets 12 November 2010

RR: Ring Quadrupoles Parameters for Quadrupoles Number of magnets 736 Aperture radius [mm] 30

RR: Ring Quadrupoles Parameters for Quadrupoles Number of magnets 736 Aperture radius [mm] 30 Field gradient [T/m] 10. 5 Magnetic Length [mm] 1000 Yoke length [mm] 980 Total length [mm] 1200 Weight [kg] Number of turns/pole Current [A] Conductor material Current density [A/mm 2] Resistance [m ] Power [k. W] Inductance [m. H] Cooling Davide Tommasini 500 1 3850 copper 2. 5 28 cm 0. 12 1. 8 0. 05 made with one-piece laminations water/air LHe. C workshop: Warm Magnets 12 November 2010

RR: Insertion+BP Quadrupoles Parameters for Quadrupoles Number of magnets 194 Aperture radius [mm] 30

RR: Insertion+BP Quadrupoles Parameters for Quadrupoles Number of magnets 194 Aperture radius [mm] 30 Field gradient [T/m] 18 Magnetic Length [mm] 1000 Yoke length [mm] 980 Total length [mm] 1200 Weight [kg] Number of turns/pole Current [A] Conductor material Current density [A/mm 2] Resistance [m ] Power [k. W] Inductance [m. H] Cooling Davide Tommasini 500 17 385 Copper 5 40 6 34 cm 12 water LHe. C workshop: Warm Magnets 12 November 2010

60. 5 Ge. V Recirculator Parameters from Alex Bogacz Proposed solution: Ø one type

60. 5 Ge. V Recirculator Parameters from Alex Bogacz Proposed solution: Ø one type of bending magnets, possibly with different conductors Ø one type of quadrupoles for the Linacs Ø one type of quadrupoles for the arcs in two different length: Q 2 1200 mm, Q 0 -Q 1 Q 3 900 mm; possibly with different conductors, radius 20 mm Davide Tommasini LHe. C workshop: Warm Magnets 12 November 2010

Quadrupoles for 10 Ge. V Recirculator Linacs Parameters for Quadrupoles Number of magnets 72

Quadrupoles for 10 Ge. V Recirculator Linacs Parameters for Quadrupoles Number of magnets 72 Aperture radius [mm] 20 Field gradient [T/m] 4. 4 Magnetic Length [mm] 500 Weight [kg] 150 Number of turns/pole 18 Current [A] 40 Conductor material Copper Current density [A/mm 2] 1. 5 Resistance [m ] 60 Power [k. W] 0. 1 Inductance [m. H] Cooling Davide Tommasini 9 air LHe. C workshop: Warm Magnets 25 cm 12 November 2010

Bending for 60 Ge. V Recirculator Magnet Parameters L-R Beam Energy [Ge. V] 70

Bending for 60 Ge. V Recirculator Magnet Parameters L-R Beam Energy [Ge. V] 70 Magnetic Length [m] 5. 0 Magnetic field [Gauss] Number of magnets 3300 6*600 Vertical aperture [mm] 25 Pole width [mm] 80 Number of coils 2 Number of turns/coil 1 Current [A] Conductor material 2750 copper Magnet Inductance [m. H] 0. 12 Magnet Resistance [m ] 0. 13 Power per magnet [k. W] Cooling Davide Tommasini 23 cm 1 Air or water LHe. C workshop: Warm Magnets 12 November 2010

Quadrupoles for 60 Ge. V Recirculator Parameters for Quadrupoles Number of magnets 1440 Aperture

Quadrupoles for 60 Ge. V Recirculator Parameters for Quadrupoles Number of magnets 1440 Aperture radius [mm] 20 Field gradient [T/m] 41 Magnetic Length [mm] Weight [kg] Number of turns/pole Current [A] Conductor material Current density [A/mm 2] Resistance [m ] Power [k. W] 900 -1200 550 -750 17 410 Copper 5 30 -40 5 -7 Inductance [m. H] 15 -20 Cooling water Davide Tommasini LHe. C workshop: Warm Magnets 35 cm 12 November 2010

Experimental work for RR: why ISSUES Ø field reproducibility & homogeneity at injection Ø

Experimental work for RR: why ISSUES Ø field reproducibility & homogeneity at injection Ø synchrotron radiation power Ø compact & easy magnets to fit in the present LHC STRATEGY Ø low coercivity concepts: two alternatives are being explored § all-iron (BINP) § interleaved laminations (CERN) Ø C-Type, open towards the outside Davide Tommasini LHe. C workshop: Warm Magnets 12 November 2010

STATUS OF BINP WORK 22 A/m 6 A/m 3408 grain oriented steel 0. 35

STATUS OF BINP WORK 22 A/m 6 A/m 3408 grain oriented steel 0. 35 mm thick laminations Ø after cycles of different amplitude, the remanent field is of about 1 Gauss in all cases Ø the reproducibility of the injection field is about ± 0. 075 Gauss Davide Tommasini LHe. C workshop: Warm Magnets 12 November 2010

STATUS OF CERN WORK Ø interleaved, low-coercivity iron (Hc<25 A/m) Ø low resistance conductor,

STATUS OF CERN WORK Ø interleaved, low-coercivity iron (Hc<25 A/m) Ø low resistance conductor, air cooled Ø two turns only, bolted bars Ø 400 mm long models with different types of iron 30 cm Ø design completed Ø spacers under manufacture (phenolic) Ø Ni. Fe 50 steel (Hc = 3 A/m, ) as reference Ø low carbon iron (Hc=20 A/m) is available Ø first model expected before Christmas Davide Tommasini Magnet Parameters Beam Energy [Ge. V] Magnetic Length [m] Magnetic field [Gauss] Number of magnets Vertical aperture [mm] Pole width [mm] Number of coils Number of turns/coil Current [A] Conductor section [mmxmm] Conductor material Magnet Inductance [m. H] Magnet Resistance [m ] Power per magnet [W] Cooling LHe. C workshop: Warm Magnets 70 5. 45 874 3080 40 150 2 1 1500 92 x 43 aluminum 0. 15 0. 2 450 air 12 November 2010

Conclusion Ø magnets are certainly not the major issue of this Project Ø they

Conclusion Ø magnets are certainly not the major issue of this Project Ø they are small, light, relatively cheap though numerous Ø the tight requirements of low field reproducibility in case of the RR option can be met by a proper use of materials and design Ø magnets for the transfer lines were not considered here Davide Tommasini LHe. C workshop: Warm Magnets 12 November 2010