MT 4510 Solar Theory Thomas Neukirch Sun Facts

  • Slides: 25
Download presentation
MT 4510 Solar Theory Thomas Neukirch

MT 4510 Solar Theory Thomas Neukirch

Sun Facts Radius Volume Mass Density Earth 6 400 km Sun 696 000 km

Sun Facts Radius Volume Mass Density Earth 6 400 km Sun 696 000 km 109 x Earth’s radius 1. 1 x 1012 km 3 1. 41 x 1018 km 3 1 300 000 x Earth’s volume 6 x 1024 kg 2 x 1030 kg 333 000 x Earth’s mass 5 500 kg/m 3 1 400 kg/m 3 1/4 x Earth’s density

Sun Facts Earth Consistency Solid core: iron Rotation 1 day rate Distance from Earth

Sun Facts Earth Consistency Solid core: iron Rotation 1 day rate Distance from Earth Luminosity Sun Electrically charged gas core: hydrogen 25 days - equator 33 days - poles ‘differential rotation’ 149 000 km 23 000 x Earth’s radius 4 x 1026 W 4 x 1025 light bulbs

Sun’s Nuclear Core • Fusion of hydrogen in core produces gamma rays

Sun’s Nuclear Core • Fusion of hydrogen in core produces gamma rays

Solar Interior Core Radiative Zone Convection Zone Photosphere (surface)

Solar Interior Core Radiative Zone Convection Zone Photosphere (surface)

Helioseimology • Used to study the interior of the Sun • It is the

Helioseimology • Used to study the interior of the Sun • It is the study of • • resonant wave modes of oscillation of the Sun Modes of oscillation are visible manifestations of trapped standing sound waves Strongest periods ~ 5 mins

Solar Rotation Rate • Relative rotation rates of material in the Sun determined using

Solar Rotation Rate • Relative rotation rates of material in the Sun determined using helioseismology • Red material – fastest • Dark blue – slowest • Interior: red moves ~ • 4% faster than outer layers. Surface: red (equator) moves ~ 3, 000 mph faster than blue (poles).

Solar Atmosphere Photosphere Chromosphere Corona

Solar Atmosphere Photosphere Chromosphere Corona

Observing Sun’s Atmosphere

Observing Sun’s Atmosphere

Photosphere • T ~ 6600 -4300 K • ρ ~ 10 -8 th of

Photosphere • T ~ 6600 -4300 K • ρ ~ 10 -8 th of water • P ~ 10 -2 th of atmosphere • H ~ 100 km • Visible light images reveal sunspots • Magnetograms reveal surface magnetic fields • Field into Sun – black • Field out of Sun - white

 • Chromosphere 4300 K < T < 106 K • ρ ~ 10

• Chromosphere 4300 K < T < 106 K • ρ ~ 10 -8 -10 -14 less than water • P ~ not much! • H ~ 2500 km • Observed in many wavelengths, e. g. , • Ca II K (393. 3 nm) • H alpha (656. 3 nm)

Corona T > 106 K (low corona) • • ρ < 10 -14 less

Corona T > 106 K (low corona) • • ρ < 10 -14 less than water • P ~ even less! • H - to Earth & beyond! • Observed in • EUV (T~106 K) • Soft X-ray (T> 2 x 106 K) • White light

Corona X-ray bright point Coronal hole Active region Coronal loops

Corona X-ray bright point Coronal hole Active region Coronal loops

Coronal Heating Problem

Coronal Heating Problem

Solar Cycle Solar Minimum Solar Maximum

Solar Cycle Solar Minimum Solar Maximum

Sunspots • Magnetic field strength ~ 2 -3 x 103 G • Umbra –

Sunspots • Magnetic field strength ~ 2 -3 x 103 G • Umbra – (almost) vertical field • Penumbra – (more) horizontal field • Number of sunspots varies over 11 year cycle Umbra Penumbra

Magnetic field responsible for solar activity ! Sunspots = strong magnetic field Emission in

Magnetic field responsible for solar activity ! Sunspots = strong magnetic field Emission in all wavelengths correlates well with strong magnetic field regions Magnetic field dominates solar atmosphere (magnetic energy density >> pressure)

Prominences • Situated in corona • Cool, dense plasma confined in vertical sheets •

Prominences • Situated in corona • Cool, dense plasma confined in vertical sheets • Lifetimes: days-months • Size: 2 x 105 x 5 x 104 x 6 x 103 km 3 (Lx. Hx. W) • ρ: 10 -12 kg cm-3 • T: 5 -10 x 103 K

Solar Flares • Sudden, impulsive, intense, large-scale, heating events • Very energetic: from 1022

Solar Flares • Sudden, impulsive, intense, large-scale, heating events • Very energetic: from 1022 - 1025 J • Lifetimes: hours

Coronal Mass Ejections (CMEs) • Very large events • • that eject mass from

Coronal Mass Ejections (CMEs) • Very large events • • that eject mass from the Sun Energy: 1025 J Mass: 1015 kg Lifetime: hours Usually related to a prominence eruption

Solar Wind • Ions and electrons • continually stream out along magnetic field lines

Solar Wind • Ions and electrons • continually stream out along magnetic field lines Solar wind: – Strong above poles (open field) – Weak about equator (closed field)

Sun-Earth Connection • Solar wind continually buffets Earth’s magnetic field • CME’s can distort

Sun-Earth Connection • Solar wind continually buffets Earth’s magnetic field • CME’s can distort Earth’s magnetic field and cause Auroras

The Sun on 10 Feb 2008 EIT 304 EIT 171 EIT 195 EIT 284

The Sun on 10 Feb 2008 EIT 304 EIT 171 EIT 195 EIT 284 MDI CONT MDI MAG LASCO C 2 LASCO C 3

Solar Theory Course § Topic 1 Maxwell’s equations and magnetic fields Importance Outline structure

Solar Theory Course § Topic 1 Maxwell’s equations and magnetic fields Importance Outline structure of events 2 MHD equations 3 Magnetic reconnection and magnetic energy 4 MHD equilibria Describe behaviour of Sun Flares, CMEs, coronal heating, solar wind Coronal arcades and loop structures, prominences Helio/coronal-seismology, coronal heating, solar wind Sun/Earth connection 5 MHD waves 6 Solar wind

The Sun (Summary)

The Sun (Summary)