Hamiltonian Formulation of General Relativity M O Katanaev

  • Slides: 11
Download presentation
Hamiltonian Formulation of General Relativity M. O. Katanaev Steklov Mathematical Institute, Moscow Short historical

Hamiltonian Formulation of General Relativity M. O. Katanaev Steklov Mathematical Institute, Moscow Short historical Notes Dirac (1958) Arnowitt, Deser, Misner (ADM) (1960) De. Witt (1967) Regge, Teitelboim (1974). . . . Dirac (1962) Schwinger (1963) - metric formulation - vielbein formulation (time gauge) . . . Deser, Isham (1976) Nelson, Teiltelboim (1978) Henneaux (1983) Charap, Nelson (1986) . . . - vielbein formulation 1

ADM parameterization of the metric - n-dimensional space-time Pseudo-Riemannian manifold: - local coordinates -

ADM parameterization of the metric - n-dimensional space-time Pseudo-Riemannian manifold: - local coordinates - metric The rule: - subsets - ADM parameterization - lapse function - shift function - the inverse to For - one-to-one correspondence 2

ADM parameterization of the metric (continued) - time Theorem. The metric has Lorentzian signature

ADM parameterization of the metric (continued) - time Theorem. The metric has Lorentzian signature if and only if the metric is negative definite. Additional assumption: all sections are spacelike - is negative definite - the Hilbert – Einstein action 3

Hamiltonian metric form of General Relativity - ADM parameterization of the metric - the

Hamiltonian metric form of General Relativity - ADM parameterization of the metric - the induced metric on hypersurfaces - the induced connection - the internal curvature - the extrinsic curvature - normal to a hypersurface - the trace of extrinsic curvature here and 4

Hamiltonian metric form of General Relativity (continued) - the Lagrangian - primary constraints -

Hamiltonian metric form of General Relativity (continued) - the Lagrangian - primary constraints - the canonical momenta - the Hamiltonian density where - the Hamiltonian 5

Secondary constraints - the Hamiltonian - Poisson brackets - primary constraints secondary constraints 6

Secondary constraints - the Hamiltonian - Poisson brackets - primary constraints secondary constraints 6

Algebra of secondary constraints - the Hamiltonian - phase space variables - Lagrange multipliers

Algebra of secondary constraints - the Hamiltonian - phase space variables - Lagrange multipliers - constraints - generator of space diffeomorphisms Dirac (1951) De. Witt (1967) where 7

where - irreducible decomposition The canonical transformation additional constraints: - generating functional depending on

where - irreducible decomposition The canonical transformation additional constraints: - generating functional depending on new coordinates and old momenta 8

The constraints - scalar curvature A. Peres, Nuovo Cimento (1963) - polynomial of degree

The constraints - scalar curvature A. Peres, Nuovo Cimento (1963) - polynomial of degree - totally antisymmetric tensor density 9

Algebra of the constraints - Poisson manifold Basic Poisson brackets: - degenerate - algebra

Algebra of the constraints - Poisson manifold Basic Poisson brackets: - degenerate - algebra of the constraints Submanifold defined by the equations is the phase space 10

Four-dimensional General Relativity - Hamiltonian - independent variables - scalar curvature (fifth order) -

Four-dimensional General Relativity - Hamiltonian - independent variables - scalar curvature (fifth order) - quadratic polynomial 11