Study on Using GFRP for Vertical Green Vegetation

  • Slides: 1
Download presentation
Study on Using GFRP for Vertical Green Vegetation Units 1 1 Yeou-Fong Li and

Study on Using GFRP for Vertical Green Vegetation Units 1 1 Yeou-Fong Li and Syun-Yu Chen 2 Professor of the Department of Civil Engineering , NTUT, Taipei, Taiwan. 2 Master of the Department of Civil Engineering, NTUT, Taipei, Taiwan. Abstract : In this study, the application of light weight, high strength, anti-corrosion, weather resistant and heat insulation Glass Fiber Reinforced Plastic (GFRP) composite members to “Green Vegetation Units” to replace similar green facades made of metal materials is presented. Experiment was conducted on the plant-compatibility and mechanical behavior of the FRP components. From the results of the experiments discussed above, an “GFRP vegetation window frame” for vines to climb on was designed using the GFRP components. Finally, in order to investigate the carbon footprint and carbon reduction benefits of the “GFRP vegetation window frame”, carbon footprint comparison was made with that of a similar stainless steel (SUS 304) frame and aluminum (6063 -T 5) before discussing the overall carbon footprint reduction benefits of the “GFRP vegetation window frame”. Keywords:FRP, GFRP Vegetation Window Frame, Tree-point bending test, Carbon Footprint, Life Cycle Cost Analysis GFRP Vegetation Window Frame The Plant-Compatibility Experiment Pyrostegia venusta Item Ficus pumila Uncoated Experimental location Epoxy Coated Painted GFRP Thread Bar Specimen Growth Height (cm) Fastest Growth Rate Slowest PT 1 25. 7 11. 4 % 0. 28 % Fractured by wind and rain frequency The number of plants wither PT 2 PT 3 PTE 1 PTE 2 PTE 3 PTP 1 PTP 2 PTP 3 76. 5 58. 0 13. 0 24. 4 21. 0 73. 5 28. 0 36. 2 20. 9 % 12. 8 % 5. 04 % 6. 92 % 3. 51 % 17. 7 % 4. 04 % 7. 14 % 0. 19 % 0. 18 % 0. 29 % 0. 24 % 0. 19 % 0. 25 % 0. 16 % 0. 22 % 0 2 0 0 Carbon Footprint and Carbon Reduction Benefit Analysis GFRP Smooth Bar Specimen PS 1 Growth Height (cm) Growth Rate Window type Size (cm) Weight (kg) GFRP Production 31. 13 218. 52 100. 01 0. 17 0. 59 0. 13 Basic data Growth photos PS 2 PS 3 26. 9 16. 8 19. 0 Fastest 6. 9 % 7. 6 % 6. 2 % Slowest 0. 20 % 0. 19 % 0. 16 % PSE 1 4. 0 3. 42 % 1. 93 % PSE 1 -1 PSE 2 PSE 3 PSP 1 PSP 2 PSP 3 35. 3 38. 3 29. 5 16. 0 26. 0 12% 9. 89% 15. 7% 4. 56 % 6. 84 % 6. 40% 0. 13% 0. 70% 0. 16 % 0. 27 % 0. 15 % Fractured by wind and rain frequency 4 2 5 The number of plants wither 0 1 0 Evaluation Transportation (kg. CO 2 eq) Construction Total carbon footprint (kg. CO 2 e) 8. 5 Stainless Steel (SUS 304) Aluminum (6063 -T 5) 140 × 125 × 5. 08 35. 8 12. 1 0. 69 6. 14 0. 69 32. 00 227. 18 100. 83 Production stage Growth photos Transportation Stage GFRP Stainless steel (SUS 304) Aluminum (6063 -T 5) The three-point bending test of a GFRP component Specimen Pmax (k. N) Mmax (k. N-cm) S 1 S 2 S 3 average 11. 52 13. 98 13. 60 13. 03 403. 30 489. 45 476. 06 456. 27 Mmax (k. N/cm 2 ) 37. 20 45. 15 43. 92 42. 09 The chemical bonding experiment Specimen CE 1 CE 2 CE 3 average Pmax (k. N) 1. 70 1. 59 1. 68 1. 66 Mmax (k. N/cm 2) 0. 68 0. 62 0. 66 0. 65 The physical (bolt) bonding experiment Specimen PN 1 PN 2 PN 3 average Pmax (k. N) 3. 69 3. 39 3. 79 3. 62 Construction Stage Total Life Cycle Cost Analysis Initial Cost GFRP Stainless steel (SUS 304) Aluminum (6063 -T 5) 50 years Matnain Cost 50 years Life Cycle Cost NTD