Peladiteln lasery optick parametrick genertory a ramanovsk lasery

  • Slides: 54
Download presentation
Přeladitelné lasery, optické parametrické generátory a ramanovské lasery Laserové systémy 2009 -2010

Přeladitelné lasery, optické parametrické generátory a ramanovské lasery Laserové systémy 2009 -2010

Přeladitelné lasery, optické parametrické generátory a ramanovské lasery I. Klasické lasery-“monochromatické“ Nd: YAG, rubín,

Přeladitelné lasery, optické parametrické generátory a ramanovské lasery I. Klasické lasery-“monochromatické“ Nd: YAG, rubín, He-Ne atd. Lze přelaďovat pouze diskrétně mezi jednotlivými přechody a generovat nové vlnové délky metodami nelineární optiky. Př: Generace v Nd: YAG na vlnových délkách 1. 06 um, 1. 32 um, 1. 44 um… Generace vyšších harmonických frekvencí. : 0. 532 um, 0. 355 um… II. Přeladitelné pevnolátkové lasery: Ti: safír, Alexandrit, forsterit… - vibrační hladiny, lze přelaďovat spojitě v širokém rozsahu. III. Optické parametrické generátory. Založeny na třívlnové interakci světelných vln v nelineárním prostředí. Dochází k výměně energie mezi čerpací, signálovou a jalovou vlnou. Spojitě přeladitelné v širokém rozsahu. IV. Ramanovské lasery - využívají stimulovaného Ramanova rozptylu v plynných a pevných látkách. Diskrétní ladění.

Vlnové délky nejpoužívanějších laserů

Vlnové délky nejpoužívanějších laserů

I. Klasické lasery-“monochromatické“ Nd: YAG, rubín, He-Ne atd. Lze přelaďovat pouze diskrétně mezi jednotlivými

I. Klasické lasery-“monochromatické“ Nd: YAG, rubín, He-Ne atd. Lze přelaďovat pouze diskrétně mezi jednotlivými přechody a generovat nové vlnové délky metodami nelineární optiky. Př: Generace v Nd: YAG na vlnových délkách 1. 06 um, 1. 32 um, 1. 44 um… Generace vyšších harmonických frekvencí. : 0. 532 um, 0. 355 um…

Přelaďování Nd: YAG laseru

Přelaďování Nd: YAG laseru

Vlnové délky generované Nd: YAG laserem

Vlnové délky generované Nd: YAG laserem

Metody přelaďování vlnové délky • Dichroickými zrcadly (diskrétní ladění, potlačení jiných vlnových délek) •

Metody přelaďování vlnové délky • Dichroickými zrcadly (diskrétní ladění, potlačení jiných vlnových délek) • Disperzními hranoly v rezonátoru • Mřížkami v rezonátoru (uzší spektrum) • Dvojlomými etalony

Dvoufrekvenční Nd: YAG Laser

Dvoufrekvenční Nd: YAG Laser

Přelaďování disperzním hranolem

Přelaďování disperzním hranolem

Dual wavelength generation of a diode pumped Nd: Gd. VO 4 laser at 1063

Dual wavelength generation of a diode pumped Nd: Gd. VO 4 laser at 1063 and 1066 nm Václav Kubeček*, Michal Drahokoupil, Petr Zátorský, Miroslav Čech and Petr Hiršl Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering Brehova 7, 115 19 Prague 1, Czech Republic SPIE Photonics Europe 08: Paper 6998 -32

Fluorescent spectra of Nd: Gd. VO 4 Czeranowsky et. al. , Optics Communications 205

Fluorescent spectra of Nd: Gd. VO 4 Czeranowsky et. al. , Optics Communications 205 (2002) 361 -36

Nd: Gd. VO 4 lasing at different wavelengths from 1063 nm 912 nm /456

Nd: Gd. VO 4 lasing at different wavelengths from 1063 nm 912 nm /456 nm Czeranowsky et. al. Opt. Communications 205 (2002) 361 -36 1340 nm/670 nm Agnesi et al. Opt. Lett. 29, (2004) 5658 1082. 4 – 1083. 5 nm Chen et. al. Opt. Lett. 30, (2005) 21072109 This work : 1063 nm and 1066 nm lasing of Nd: Gd. VO 4 in a bounce geometry.

Experimental setup (grazing incidence geometry *) M 3 (R 3= 30% or 88 %

Experimental setup (grazing incidence geometry *) M 3 (R 3= 30% or 88 % ) POL M 2 WP Nd: Gd. VO 4 M 1 λ/2 waveplate L D M 1 - flat rear mirror, M 2 - folding mirror (concave 1 m radius of curvature), M 3 - flat and wedged output coupler with reflectivity of 30% or 88 %, LD – 100 W QCW laser diode array, AM – active medium slab, WP-wave plate, POL-polarizer * A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers, ”IEEE J. Sel. Topics in QE, 3, 3 -8 (1997)

Active medium and laser diode 16 mm 4 nm Slab crystal: Nd: Gd. VO

Active medium and laser diode 16 mm 4 nm Slab crystal: Nd: Gd. VO 4 – 1% Nd 16 x 4 x 2 mm FOCtek, China AR @ 106 AR @ 808 nm 4 mm nm 1064 AR @ 808 nm 14 mm

Output characteristics of the dual frequency Nd: Gd. VO 4 laser. Rout = 30

Output characteristics of the dual frequency Nd: Gd. VO 4 laser. Rout = 30 %, tpump = 100 us, R out = 88 %, tpump = 150 us Efficiency : 38 %/15% Efficiency : 33 %/28%

Measured spectra of Nd: Gd. VO 4 Ocean Optics HR 2000 fiber spectrometer (resolution

Measured spectra of Nd: Gd. VO 4 Ocean Optics HR 2000 fiber spectrometer (resolution 1 nm)

DUAL wavelength laser WITHOUT POLARIZER - TUNING BY M 1 ONLY M 3 (R

DUAL wavelength laser WITHOUT POLARIZER - TUNING BY M 1 ONLY M 3 (R 3= 88%) M 2 AM WP M 1 L D 1063 nm, E out 4, 6 m. J TEM 00 1066 nm, Eout: 3. 5 m. J TEM 00/4, 6 m. J TEM 01 DUAL WAVELENGTH, Eout 4 m. J TEM 01, (1, 5 m. J 1063, 2. 5 m. J 1066) Pump 99, 9 A, 150 us, 50 Hz

II. Přeladitelné pevnolátkové lasery: Ti: safír, Alexandrit, forsterit… - vibrační hladiny, lze přelaďovat spojitě

II. Přeladitelné pevnolátkové lasery: Ti: safír, Alexandrit, forsterit… - vibrační hladiny, lze přelaďovat spojitě v širokém rozsahu.

II. Generace-Pevnolátkové vibrační přeladitelné lasery od r. 1984

II. Generace-Pevnolátkové vibrační přeladitelné lasery od r. 1984

Vibrační lasery - principy • Laditelnost je dosažena vazbou mezi stimulovanou emisí fotonu a

Vibrační lasery - principy • Laditelnost je dosažena vazbou mezi stimulovanou emisí fotonu a emisí vibračního kvanta (fononu) • Celková energie přechodu je fixní ale může být rozdělena mezi fotony a fonony spojitým způsobem • Interakce mezi Coulomb polem laserového iontu, polem krystalové mříže a elektron-fononovou vazbou • Zisk ve vibračních laserech závisí na přechodech nei vázanými vibračními a elektronovými stavy.

Parametry nejpoužívanějších krystalů přeladitelných laserů

Parametry nejpoužívanějších krystalů přeladitelných laserů

Aktivní materiály

Aktivní materiály

Nejvýznamnější představitel – Titan: safírový laser

Nejvýznamnější představitel – Titan: safírový laser

Příklad pulzně buzeného Ti: Sa laseru

Příklad pulzně buzeného Ti: Sa laseru

Charakteristiky pulzně buzeného Ti: Sa laseru

Charakteristiky pulzně buzeného Ti: Sa laseru

Příklad pulzně buzeného Ti: Sa laseru s uzší spektr. šířkou

Příklad pulzně buzeného Ti: Sa laseru s uzší spektr. šířkou

Kontinuálně buzený Ti: Sa laser

Kontinuálně buzený Ti: Sa laser

Kompaktní Cr: YAG lasery- oblast kolem 1. 5 um

Kompaktní Cr: YAG lasery- oblast kolem 1. 5 um

Yterbiove lasery

Yterbiove lasery

Závěr • PVL lasery lze přelaďovat od 600 nm do 4500 nm.

Závěr • PVL lasery lze přelaďovat od 600 nm do 4500 nm.

Optické parametrické generátory a ramanovské lasery Laserové systémy 2009 -2010

Optické parametrické generátory a ramanovské lasery Laserové systémy 2009 -2010

… III. Optické parametrické generátory. Založeny na třívlnové interakci světelných vln v nelineárním prostředí.

… III. Optické parametrické generátory. Založeny na třívlnové interakci světelných vln v nelineárním prostředí. Dochází k výměně energie mezi čerpací, signálovou a jalovou vlnou. Spojitě přeladitelné v širokém rozsahu.

Optická parametrická generace a zesilování • Nelineárně optický proces probíhající v nelineárním krystalu, kdy

Optická parametrická generace a zesilování • Nelineárně optický proces probíhající v nelineárním krystalu, kdy za určitých podmínek světelná vlna o kruhové frekvenci w(p) předá svoji energii dvěma vlnám o frekvencích w(s) a w(i). • Musí platit • w(p) = w(s) + w(i). (Zachování energie) • • • k (p) = k(s) + k(i). (zachování impulsu ) Třívlnová interakce, je popsána složkou nelineární susceptibility c (2) Využívá optickou vlnu o nejkratší vlnové délce ke generaci dvou vln o vyšších vlnových délkách. První OPG – Giordmaine a Miller, 1965 Laser 1960 - Maiman

Parametrické zesílení

Parametrické zesílení

Parametrická generace

Parametrická generace

Rezonátory OPG

Rezonátory OPG

Metody přelaďování vlnové délky Natáčením krystalu Laděním teploty krystalu Jedná se o splnění podmínky

Metody přelaďování vlnové délky Natáčením krystalu Laděním teploty krystalu Jedná se o splnění podmínky fázového synchronismu

BBO OPO čerpaný harmonickými Nd laseru

BBO OPO čerpaný harmonickými Nd laseru

Příklad pulzně buzeného OPO

Příklad pulzně buzeného OPO

Parametry OPG

Parametry OPG

OPG Příklady: www. ekspla. com

OPG Příklady: www. ekspla. com

Závěr • OPG lasery lze přelaďovat od 250 nm do 6000 nm.

Závěr • OPG lasery lze přelaďovat od 250 nm do 6000 nm.

IV. Ramanovské lasery - využívají stimulovaného Ramanova rozptylu v plynných a pevných látkách. Diskrétní

IV. Ramanovské lasery - využívají stimulovaného Ramanova rozptylu v plynných a pevných látkách. Diskrétní ladění.

Ramanovské lasery dochází k nepružnému rozptylu čerpacích fotonů a část jejich energie je předána

Ramanovské lasery dochází k nepružnému rozptylu čerpacích fotonů a část jejich energie je předána prostředí- např vibrační kmity molekul či elektronová excitace • Princip: Stimulovaný Ramanův rozptyl • Nelineárně optický jev 3. řádu • Susceptibilita c (3) • Generace diskrétních frekvencí • s. Stokes, Ramanovský posuv, Stokesova frekvence, antistokesova frekv

Ramanovská prostředí dochází k nepružnému rozptylu fotonů a část jejich energie je předána prostředí-

Ramanovská prostředí dochází k nepružnému rozptylu fotonů a část jejich energie je předána prostředí- např vibrační kmity molekul či elektronová excitace • Plyny • Pevné látky (krystalické) • Skla- optická vlákna

Schemata Raman. laserů

Schemata Raman. laserů

Plynné prostředí

Plynné prostředí

H 2 Raman Laser

H 2 Raman Laser

Vláknový laser www. ipgphotonics. com

Vláknový laser www. ipgphotonics. com

Pevnolátkový Ramanovský laser

Pevnolátkový Ramanovský laser

Zajímavá oblast je nyní v blízké IČ • Měření polucí, laserová medicína.

Zajímavá oblast je nyní v blízké IČ • Měření polucí, laserová medicína.