ME 612 Metal Forming and Theory of Plasticity

  • Slides: 4
Download presentation
ME 612 Metal Forming and Theory of Plasticity Assoc. Prof. Dr. Ahmet Zafer Şenalp

ME 612 Metal Forming and Theory of Plasticity Assoc. Prof. Dr. Ahmet Zafer Şenalp e-mail: azsenalp@gmail. com e-mail: Mechanical Engineering Department Gebze Technical University

ME 612 Metal Forming and Theory of Plasticity Course Contents 1. Introduction 2. Definitions

ME 612 Metal Forming and Theory of Plasticity Course Contents 1. Introduction 2. Definitions 3. Work Hardening Models 4. Factors Effecting Work Hardening Characteristics 5. Stress 6. Strain 7. Yield Criteria of Metals 8. Stress-Strain Relations 9. Methods of Determining Work Hardening Characteristics 10. Plastic Instability 11. Plastic Anisotropy 12. The Solution Methods Used In Metal Forming Area 13. The Ideal Work Method 14. Slab Analysis of Bulk Forming Processes 15. Open Die Forging Processes 16. Cold Rolling of Strip 17. Sheet Metal Bending Dr. Ahmet Zafer Şenalp ME 612 Mechanical Engineering Department, GTU 2

ME 612 Metal Forming and Theory of Plasticity References [1] [2] [3] 1958. [4]

ME 612 Metal Forming and Theory of Plasticity References [1] [2] [3] 1958. [4] Johnson, W. and Mellor, P. B. , Engineering Plasticity, New York Van Nostrand Reinhold. Hosford, W. F. and Caddell R. M. , Metal Forming Mechanics and Metallurgy , Prentice Hall International Editions. Johnson, W. , Upper Bound Loads for Extrusion Through Circular Shaped Dies , Appl. Sci. Res. Series A, Vol. 7, p. 437, Liu, J. Y. , Upper Bound Solutions of Some Axisymmetric Cold Forging Problems, Transactions of the ASME, Journal of Engineering for Industry, pp. 1134 -1144, November, 1971. [5] Nagpal, V. , Lahoti, G. D. and Altan, T. , A Numerical Method for Simultaneous Prediction of Metal Flow and Temperatures in Upset Forging of Rings, Transactions of the ASME, Journal of Engineering for Industry, November, Vol. 100, pp. 413420, 1978. [6] Avitzur, B. , An Upper Bound Approach to Cold Strip Rolling', Journal Engineering Industry, ASME, Paper No: 63 Prod. 8. [7] Hosford, W. F. and Caddell, R. M. , Metal Forming Mechanics and Metallurgy, Prentice Hall International Editions, pp. 115 - 138, 1983. [8] Akgerman, N. and Altan, T. , Modular Analysis of Geometry and Stresses in Closed Die Forging: Application to a Structural Part, Transactions of the ASME, Journal of Engineering for Industry, November, PP. 1025 1034, 1972. [9] Hosford, W. F. and Caddell, R. M. , Metal Forming Mechanics and Metallurgy, Prentice Hall International Editions, pp. 168 - 201, 1983. [10] Johnson, W. , Sowerby, R. and Haddow, J. B. , Plane Strain 132 ip Line Fields: Theory and Bibliography, New York, American Elsevier, 1970. Dr. Ahmet Zafer Şenalp ME [11] Boor, F. , Modelling of deep drawing of complex shaped components using slip line methods, Proceedings of 30 th 3 Mechanical Engineering Department, GTU 612 International

[12] Boor, F. and Kardos, K. , Stress line methods for industry and education

[12] Boor, F. and Kardos, K. , Stress line methods for industry and education , 7 th International Machine Design and Production Conference, September, METU, Ankara, Turkey pp. 313 -321, 1996. [13] Ghali, A. and Neville, A. M. , Structural Analysis, A Unified Classical and Matrix Approach, Chapman and Hall, pp. 435 - 471, 1986. [14] Takezona, S. and Tao, K. , Elasto/Visco-Plastic Dynamic Response of General Thin Shells to Blast Loads, Bulletin of the JSME, Vol. 25, No. 203, May, pp. 728 -735, 1982. [15] Şenalp, A. Z. , Computer Aided Wrinkling Analysis Of Nonsymmetric Parts In Sheet Metal Forming, Ph. D. Thesis, Middle East Technical University, 1998. [16] Kılkış, B. And Kaftanoğlu, B. , On the Finite Diffence Formulation of Non-Linear Plastic Deformations, Proceedings of Int. Conf. On Numerical Methods for Non-Linear Problems, pp. 63 -73, Pineridge Press, 1980. [17] Perzyna, P. , Fundamental Problems in Viscoplasticity', Advances in Applied Mechanics, Vol 9, pp 243 -377, 1966. [18] Owen, D. R. J. and Hinton, E. , Finite Elements in Pllasticity Theory and Practice, Pineridge Press, Swansea, 1980. [19] Waszezyszyn, Z. , Computational methods and Plasticity', Report CR 583, Tech. Univ. Delft, faculty of Aerospace, 1989. [20] Zienkiewics, O. C. , Cormeau, I. C. , Viscoplasticity, and creep in elastic solids A Unified Numerical Solution Approach, Int. J. Num Meth. Engng, Vol 8, pp. 821 -845, 1974. [21] Tayal, A. K. and Natarajan, R. , Extrusion of Rate Sensitive Materials Using A Viscoplastic Constitutive Equation and the Finite Element Method, Int. J. Mech. Sci. , Vol. 23, pp. 89 -98 1981. [22] Oh, S. I. , Park, J. J. , Kobayashi, S. and Altan, T. , Application of FEM Modeling to Simulate Metal Flow in Forging a titanium Alloy Engine Dis", Transactions of the ASME, Journal of Engineering for Industry, November, Vol. 105, pp. 251 -258, 1983. [23] Chandra, A. and Mukherjee, S. , A finite element analysis of metal-forming problems with an elastic viscoplastic material model. Int. Journal. Num. Meth. Eng. , Vol. 20, pp. 1613 -1628, 1984. [24] Darendeliler, H. , Computer Aided Deformation Analysis of Deep Drawing Process, Ph. D. Thesis, Middle East Technical University, 1991. [25] Marcal, P. V. and King, I. P. , Elastic-Plastic Analysis of Two-Dimensional Stress Systems by the Finite Element Method, Int. J. Mech. Sci. , Vol. 9, pp. 143 -155 , 1967. [26] Prof. N. Zabaras, Materials Processing, Lecture Notes. [27] Prof. Dr. Levon Çapan, Metallerde Plastik Şekil Verme. Dr. Ahmet Zafer Şenalp ME 612 Mechanical Engineering Department, GTU 4