Yangtze River Drainage Area Hydropower Plants Jinsha River











































- Slides: 43
Yangtze River Drainage Area Hydropower Plants Jinsha River Drainage Area Three Gorges Gezhouba Xiluodu Xiangjiaba Total Installed Capacity: 75376. 4 MW 12
Gezhouba Sichuan & TGHP Chongqing East China Central China Guangdong TGHP electricity is sent to Central China, East China, Guangdong, and Chongqing with the maximum transmission range of 1000 Km by two ± 500 k. V DC circuits and eleven 500 k. V AC circuits. 13
Chengdu Xiangjiaba Chongqing Three Gorges Xiluodu Baihetan Wudongde Jinsha River step hydropower plants: Wudongde, Baihetan, Xiluodu, and Xiangjiaba 14
Xiluodu (溪洛渡) Hydropower Plant • The Xiluodu Dam is a hydroelectric dam project on the Jinsha River, i. e. the upper course of the Yangtze River. • Started in 2005, ended in 2015, the Xiluodu Dam will be third largest dam in the world. • The total generating capacity will be 13860 MW (18 x 770 MW, Aug. 2008), originally designed 12600 MW (18 x 700 MW). 15
Xiangjiaba (向家坝) Hydropower Plant • The Xiangjiaba Dam is a large hydroelectric dam on the Jinsha River, a tributary of the Yangtze River in Yunnan Province and Sichuan Province, southwest China. • The facility runs on eight turbines, each with a capacity of 800 MW, and the total generating capacity to 6, 400 MW, it will be the fourth largest dam in China. • Construction started on November 26 2006, and is scheduled for completion in 2015 16
Wudongde (乌东德) & Baihetan (白鹤滩) Hydropower Plants in near future Baihetan Hydropower Plant with the capacity of 13050 MW (2010~2020) Wudongde Hydropower plant with the capacity of 8700 MW (2010~2020) 17
Power Resources and Load Center 2/3 Coal Resources Load Center 80% hydropower Two-thirds of the coal reserves are located in the North and 80% of the hydropower reserves are located in the West. These energy sources are far removed from the energy demands located in the eastern areas 800 km to 3000 18 km away.
High Voltage (HV) : ≤ 220 k. V Extra High Voltage (EHV): AC 330 k. V~750 k. V DC ≤± 600 k. V Ultra High Voltage (UHV): AC ≥ 1000 k. V DC ≥± 800 k. V • • 330 k. V: 500 k. V: 765 k. V: 1150 k. V: 100 ---300 km, 300— 1000 MW 200 ---500 km, 1000— 2000 MW 300 ---800 km, 2000— 4000 MW 500 --1500 km, 4000— 8000 MW The main voltage level in China: AC: 400 V, 10 k. V, 20 k. V(planned), 35 k. V, 110 k. V, 220 k. V, 500 k. V, 1000 k. V AC only in North-west power grid: 330 k. V, 750 k. V DC: ± 500 k. V, ± 800 k. V 19
UHV Strategy • Increase transmission capacity One 1000 -k. V circuit transmits about 5 GW, approximately 5 times that of a 500 k. V transmission line. An ± 800 k. V dc transmission line has the capacity of 6. 4 GW, which is 2. 1 times that of a ± 500 k. V dc power line. • Extend transmission distance A 1000 k. V ac line can economically transmit power distances of 1000 km to 2000 km. An ± 800 k. V dc power line can economically transmit power over distances of 2000 km to 3000 km. • Reduce transmission losses If the conductor cross-sectional area and transmission power are held constant, the resistance losses of a 1000 k. V ac power line is 25% that of the 500 k. V ac power line. The resistance loss of ± 800 k. V dc transmission line is about 39% that of a comparable ± 500 k. V dc line. • Reduce costs The cost per unit of transmission capacity of 1000 k. V ac and ± 800 k. V dc transmission scheme are 73% and 72% that of 500 k. V ac and ± 500 k. V dc schemes, respectively. • Reduce land requirements A 1000 -k. V ac line power line saves 50% to 66% of the corridor area that a 500 k. V ac line would require. An ± 800 k. V dc line would save 23% of the corridor area required by a 500 k. V 20 dc line.
Ultra High Voltage 1000 k. V AC 5× 500 k. V AC 1000 k. V AC The present system is not capable of meeting the future electricity needs of China, UHV grid will be built out. China is now developing a 1000 k. V ac network supported by a series of ± 800 k. V dc projects. 21
The First 1000 k. V UHV Project in China Beijing Substation Jindongnan Switching station Substation Jingmen • • • Nanyang Wuhan nominal voltage 1, 000 k. V maximum voltage 1, 100 k. V 640 km of transmission line 22
More AC ultra high voltage project may be built in near future in China 23
Ultra High Voltage ± 800 k. V DC One Pole 24
Ultra High Voltage ± 800 k. V DC The first ± 800 k. V HVDC (Yunnan-Guangdong) in the world successfully operated with monopole in Dec. 28, 2009. The transmission line is 1425 km long, and operated with bipolar of capacity of 5000 MW in June 2010. 25
± 800 k. V UHVDC from Xiangjiaba to Shanghai put into service in July 2010. 26
± 800 k. V DC converter transformers ± 800 k. V DC converter station ± 800 k. V DC transmission Line 27
Planned UHVDC before 2015 in China Projects Xiluodu –Guangdong Year Voltage(k. V) Capacity(MW) Length(km) 2012 ± 800 k. V 6400 1286 Nuozhadu -Guangdong 2012 ± 800 k. V 5000 1460 Xiluodu-Zhuzhou 2014 ± 800 k. V 6400 980 Jinping-Sunnan 2012 ± 800 k. V 7200 2095 Planned UHVDC after 2015 in China Projects Year Voltage(k. V) Capacity(MW) Length(km) Xi. Luodu-Zhexi 2016 ± 800 k. V 7200 1730 Humeng-Dezhou 2016 ± 800 k. V 7200 1600 Hami-Zhenzhou 2020 ± 800 k. V 7200 2400 Zhundong-Yubei 2020 ± 800 k. V 7200 2800 Longpan-Guangdong 2020 ± 800 k. V 6400 28
Planned UHVDC after 2020 in China Projects Voltage(k. V) Baihetan-EDong ± 800 k. V Baihetan-Hengyang ± 800 k. V Baihetan-Guangdong ± 800 k. V 6400 Wudongde-Fujian ± 1000 k. V Zhundong-Nanchang ± 1000 k. V Capacity(MW) 29
背靠背(Back-to-Back: BTB)型 33
End! 43