WHAT IS STRUCTURAL EQUATION MODELING SEM 1 LINEAR

  • Slides: 43
Download presentation
WHAT IS STRUCTURAL EQUATION MODELING (SEM)? 1

WHAT IS STRUCTURAL EQUATION MODELING (SEM)? 1

LINEAR STRUCTURAL RELATIONS 2

LINEAR STRUCTURAL RELATIONS 2

Terminología • LINEAR LATENT VARIABLE MODELS • T. W. Anderson (1989), Journal of Econometrics

Terminología • LINEAR LATENT VARIABLE MODELS • T. W. Anderson (1989), Journal of Econometrics • MULTIVARIATE LINEAR RELATIONS • T. W. Anderson (1987), 2 nd International Temp. Conference in Statistics • LINEAR STATISTICAL RELATIONSHIPS • T. W. Anderson (1984), Annals of Statistics, 12 • COVARIANCE STRUCTURES • • • Browne, Shapiro, Satorra, . . . Jöreskog (1973, 1977) Wiley (1979) Keesling (1972) Koopmans and Hovel (1953) 3

Computer programs • • • LISREL EQS LISCOMP / Mplus COSAN MOMENTS CALIS AMOS

Computer programs • • • LISREL EQS LISCOMP / Mplus COSAN MOMENTS CALIS AMOS RAMONA Mx • • • Jöreskog and Sörbom Bentler Muthén Mc. Donalds Schoenberg SAS Arbunckle Browne Neale 4

Computer programs • SEM software: – EQS – LISREL – MPLUS – AMOS –

Computer programs • SEM software: – EQS – LISREL – MPLUS – AMOS – Mx http: //www. mvsoft. com http: //www. ssicentral. com http: //www. statmodel. com/index 2. html http: //smallwaters. com/amos/ http: //www. vipbg. vcu. edu/~vipbg/dr/MNEALE. shtml 5

. . . books • • • Bollen (1989) Dwyer (1983) Hayduk (1987) Mueller

. . . books • • • Bollen (1989) Dwyer (1983) Hayduk (1987) Mueller (1996) Saris and Stronkhorst (1984). . 6

. . . many research papers • Austin and Wolfle (1991): Annotated bibliography of

. . . many research papers • Austin and Wolfle (1991): Annotated bibliography of structural equation modeling: Technical Works. BJMSP, 99, pp. 85 -152. • Austin, J. T. and Calteron, R. F. (1996). Theoretical and technical contributions to structural equation modeling: An updated annotated bibliography. SEM, pp. 105 -175. 7

 Information on SEM: bibliography, courses. . General information on SEM: http: //allserv. rug.

Information on SEM: bibliography, courses. . General information on SEM: http: //allserv. rug. ac. be/~flievens/stat. htm#Structural Jason Newsom's Structural Equation Modeling Reference List http: //www. ioa. pdx. edu/newsom/semrefs. htm David A. Kenny’s course http: //users. rcn. com/dakenny/causalm. htm Jouni Kuha’s Model Assessment and Model Choice: An Annotated Bibliography http: //www. stat. psu. edu/~jkuha/msbib/biblio. html 8

. . . web sites • SEM webs: – http: //www. gsu. edu/~mkteer/semfaq. html

. . . web sites • SEM webs: – http: //www. gsu. edu/~mkteer/semfaq. html – http: //www. ssicentral. com/lisrel/ref. htm • http: //www. psyc. abdn. ac. uk/homedir/jcrawf ord/psychom. htm computing the scaling factor for the difference of chi squares 9

Introduction to SEM: • Data matrix (“raw data”) • Sufficient statistics (sample means, variances

Introduction to SEM: • Data matrix (“raw data”) • Sufficient statistics (sample means, variances and covariances) vars Indiv. Data Matrix (n x p) Sample Moments: • Vector of means • Variance and covariance matrix (p x p) • Fourth order moments: G (p* x p*) p* = p(p+1)/2, p=20 --> p* =210 10

Moment Structure S sample covariance matrix S population covariance matrix S = S(q) 11

Moment Structure S sample covariance matrix S population covariance matrix S = S(q) 11

Fitting S to S(q): Min f(S, S) ^ ^ S = S(q) ^ S

Fitting S to S(q): Min f(S, S) ^ ^ S = S(q) ^ S ≈ S ^ S – S ≈ 0 12

Type of variables Manifest Variables: Yi , Xi Measurement Model: e 3 X 3

Type of variables Manifest Variables: Yi , Xi Measurement Model: e 3 X 3 e 4 X 4 l 32 x 2 l 42 Measurement error, disturbances: ei , di 13

The form of structural equation models Latent constructs: - Endogenous - Exogenous hi xi

The form of structural equation models Latent constructs: - Endogenous - Exogenous hi xi Structural Model: - Regression of h 1 on x 2: g 12 - Regression of h 1 on h 2: b 12 Structural Error: zi 14

LISREL model: h(m x 1) = B(m x m) h(m x 1) + G(m

LISREL model: h(m x 1) = B(m x m) h(m x 1) + G(m x n) x(n x 1) + z(m x 1) y(p x 1) = Ly(p x m) h(m x 1) + e(p x 1) x(q x 1) = Lx(q x n) x(n x 1) + d(q x 1) 15

. . . path diagram (LISREL) d 1 X 1 d 2 X 2

. . . path diagram (LISREL) d 1 X 1 d 2 X 2 d 3 x 1 X 4 d 5 X 5 e 2 e 3 Y 1 Y 2 Y 3 g 11 z 1 h 1 b 31 q 21 X 3 d 4 e 1 x 2 z 2 h 3 g 22 b 32 h 2 Y 4 e 4 Y 6 e 6 Y 7 e 7 z 3 Y 5 e 5 16

SEM: i=1, 2, . . , ng, donde: zi: vector de variables observables, hi

SEM: i=1, 2, . . , ng, donde: zi: vector de variables observables, hi : vector de variables endógenas xi : vector de variables exógenas vi = (hi’, xi’)’: vector de variables observables y latentes, U(g): matriz de selección completamente especificada, B, G y F = E(xi xi’): matrices de parámetros del modelo 17

El modelo general: donde: F = var x 18

El modelo general: donde: F = var x 18

. . . path diagram (EQS) E 1 V 1 E 2 V 2

. . . path diagram (EQS) E 1 V 1 E 2 V 2 E 3 F 1 E 6 E 7 E 8 V 6 V 7 V 8 * D 3 F 3 * F 5 V 3 E 4 V 4 E 5 V 5 F 2 D 5 * * F 4 V 9 E 9 * V 11 E 11 V 12 E 12 D 4 V 10 E 10 19

RESEARCH DESINGS 21

RESEARCH DESINGS 21

Data collection designs • Cross-sectional – N independent units observed or measured at one

Data collection designs • Cross-sectional – N independent units observed or measured at one time • Time-series – One unit observed or measured al T occasions • Longitudinal – N independent units observed or measured at two or more occasions 22

Type of Variables VARIABLES • Continous • Ordinal • Nominal SCALE TYPE • •

Type of Variables VARIABLES • Continous • Ordinal • Nominal SCALE TYPE • • Interval or ratio Ordinal Ordered categories Underordered caterogies • Censored, truncated … 24

Ordinal Variables Is is assumed that there is a continuous unobserved variable x* underlying

Ordinal Variables Is is assumed that there is a continuous unobserved variable x* underlying the observed ordinal variable x. A threshold model is specified, as in ordinal probit regression, but here we contemplate multivariate regression. It is the underlying variable x* that is acting in the SEM model. 25

Polychorical correlation 26

Polychorical correlation 26

Polyserial correlation 27

Polyserial correlation 27

Threshold model 28

Threshold model 28

Modelling the effect on behaviour Correla =. 83 Affect Cognition. 65. 23 U Behaviour

Modelling the effect on behaviour Correla =. 83 Affect Cognition. 65. 23 U Behaviour Influence of affect on Behaviour is almost Three times stronger (on a standardized scale) Than the effect of Cognition. A policy that changes Affect will have more influence on B than one that changes cognition Bagozzi and Burnkrant (1979), Attitude organization and the attitude behaviour relationship, Journal Of Personality and Social Psychology, 37, 913 -29 29

Causal model with reciprocal effects U 1 P = price D = demand I

Causal model with reciprocal effects U 1 P = price D = demand I = Income W = Wages W I D + - U 2 P 30

Examples with Coupon data (Bagozzi, 1994) 31

Examples with Coupon data (Bagozzi, 1994) 31

Example: Data of Bagozzi, Baumgartner, and Yi (1992), on “coupon usage” : Sample A:

Example: Data of Bagozzi, Baumgartner, and Yi (1992), on “coupon usage” : Sample A: Action oriented women (n = 85) Intentions #1 4. 389 Intentions #2 3. 792 4. 410 Behavior 1. 935 1. 855 2. 385 Attitudes #1 1. 454 1. 453 0. 989 1. 914 Attitudes #2 1. 087 1. 309 0. 841 0. 961 Attitudes #3 1. 623 1. 701 1. 175 1. 279 Sample B: State oriented women (n = 64) Intentions #1 3. 730 Intentions #2 3. 208 3. 436 Behavior 1. 687 1. 675 2. 171 Attitudes #1 0. 621 0. 616 0. 605 Attitudes #2 1. 063 0. 864 0. 428 Attitudes #3 0. 895 0. 818 0. 595 1. 373 0. 671 0. 912 1. 480 1. 220 1. 397 0. 663 1. 971 1. 498 32

Variables /LABELS V 1 = Intentions 1; V 2 = Intentions 2; V 3

Variables /LABELS V 1 = Intentions 1; V 2 = Intentions 2; V 3 = Behavior; V 4 = Attitudes 1; V 5 = Attitudes 2; V 6 = Attitudes 3; F 1 = Attitudes F 2 = Intentions V 3 = Behavior 33

SEM multiple indicators E 4 E 5 E 6 D 2 V 4 V

SEM multiple indicators E 4 E 5 E 6 D 2 V 4 V 5 V 1 F 2 V 2 E 1 E 2 E 3 V 6 V 3 F 1 = Attitudes F 2 = Intentions V 3 = Behavior 34

INTENTIO=V 1 = 1. 000 F 2 + 1. 000 E 1 INTENTIO=V 2

INTENTIO=V 1 = 1. 000 F 2 + 1. 000 E 1 INTENTIO=V 2 = 1. 014*F 2 + 1. 000 E 2 . 088 CHI-SQUARE = 5. 426 , 7 DEGREES OF FREEDOM 11. 585 PROBABILITY VALUE IS 0. 60809 BEHAVIOR=V 3 = . 330*F 2 + . 492*F 1 + 1. 000 E 3 . 103 . 204 3. 203 2. 411 VARIANCES OF INDEPENDENT VARIABLES ----------------- E D --- -- ATTITUDE=V 4 = 1. 020*F 1 + 1. 000 E 4 E 1 -INTENTIO . 649*I D 2 -INTENTIO 2. 020*I . 255 I . 437 I . 136 2. 542 I 4. 619 I I 7. 501 E 2 -INTENTIO . 565*I . 257 I 2. 204 I I E 3 -BEHAVIOR 1. 311*I I ATTITUDE=V 5 = . 951*F 1 + 1. 000 E 5 . 213 I 6. 166 I . 117 I E 4 -ATTITUDE . 875*I 8. 124 . 161 I 5. 424 I I I E 5 -ATTITUDE . 576*I . 115 I I ATTITUDE=V 6 = 1. 269*F 1 + 1. 000 E 6 5. 023 I I . 127 E 6 -ATTITUDE . 360*I . 132 I 10. 005 2. 729 I I INTENTIO=F 2 = 1. 311*F 1 + 1. 000 D 2 . 214 6. 116 35

. . . adding parameters ? LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS) ORDERED UNIVARIATE

. . . adding parameters ? LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS) ORDERED UNIVARIATE TEST STATISTICS: NO CODE PARAMETER CHI-SQUARE PROBABILITY PARAMETER CHANGE ---------- --------------- 1 2 12 V 2, F 1 1. 427 0. 232 0. 410 2 2 12 V 1, F 1 1. 427 0. 232 -0. 404 3 2 20 V 4, F 2 0. 720 0. 396 0. 080 4 2 20 V 5, F 2 0. 289 0. 591 -0. 045 5 2 20 V 6, F 2 0. 059 0. 808 -0. 025 6 2 20 V 3, F 2 0. 000 1. 000 0. 000 7 2 0 F 1, F 1 0. 000 1. 000 0. 000 8 2 0 F 2, D 2 0. 000 1. 000 0. 000 9 2 0 V 1, F 2 0. 000 1. 000 0. 000 36

Hopkins and Hopkins (1997): “Strategic planningfinancial performance relationships in banks: a causal examination”. Strategic

Hopkins and Hopkins (1997): “Strategic planningfinancial performance relationships in banks: a causal examination”. Strategic Management Journal, Vol 18 (8), pp. (635 -652) 37

Data to be analyzed • Sample: 112 comercial bancs • Data obtained by survey

Data to be analyzed • Sample: 112 comercial bancs • Data obtained by survey • Dependent variable: • Intensity of strategic plannification • Finance results • Independent variables: • Directive factors • Contour factors • Organizative factors 38

39

39

40

40

41

41

42

42

43

43

44

44

Covariance matrix: : 0. 48 0. 76 0. 60 0. 51 0. 46 0.

Covariance matrix: : 0. 48 0. 76 0. 60 0. 51 0. 46 0. 54 -0. 06 -0. 09 0. 01 0. 31 -0. 17 -0. 21 -0. 16 0. 04 0. 44 -0. 26 -0. 06 -0. 16 -0. 19 0. 16 0. 27 0. 52 0. 32 0. 44 0. 66 0. 23 0. 07 -0. 24 0. 52 0. 40 0. 51 0. 76 0. 26 0. 19 -0. 15 0. 76 0. 49 0. 27 0. 43 0. 64 0. 17 0. 10 -0. 21 0. 77 0. 81 0. 12 0. 16 0. 09 0. 28 0. 18 0. 24 0. 07 0. 36 0. 41 0. 35 0. 34 0. 27 0. 64 0. 31 0. 23 -0. 01 0. 56 0. 67 0. 57 0. 45 0. 23 0. 08 0. 16 0. 07 0. 09 0. 16 -0. 01 0. 28 0. 30 0. 27 0. 29 0. 30 0. 03 0. 02 0. 04 -0. 07 -0. 05 -0. 03 -0. 05 0. 06 -0. 06 0. 03 0. 01 -0. 07 0. 03 0. 20 0. 32 0. 22 0. 09 -0. 24 -0. 33 0. 05 -0. 02 -0. 07 -0. 08 0. 02 0. 05 -0. 23 -0. 03 0. 15 0. 06 0. 11 -0. 03 0. 10 0. 13 0. 16 0. 13 0. 07 0. 06 0. 19 0. 21 0. 13 0. 16 Means: 34. 30 12. 75 3. 50 6. 70 7. 10 7. 00 7. 05 7. 20 7. 30 7. 45 21. 50 3. 54 2. 35 S. D. : 58. 58 4. 10 1. 61 1. 95 1. 62 1. 55 1. 52 1. 64 1. 96 1. 88 1. 78 1. 54 12. 87 0. 56 0. 67 45