Welcome to delegates of Molecular Spectroscopy Symposium 18

  • Slides: 50
Download presentation
Welcome to delegates of Molecular Spectroscopy Symposium (18 -22 June 2007) Columbus Ohio USA

Welcome to delegates of Molecular Spectroscopy Symposium (18 -22 June 2007) Columbus Ohio USA By Dr Subhash Behere Dept. of Physics Dr Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India

The Fourier Transform Spectrum of B 2 + - X 2 + System of

The Fourier Transform Spectrum of B 2 + - X 2 + System of Al. O M. D. Saksena ; M. N. Deo ; Sunanda K [BARC Mumbai] S. H. Behere and C. T. Londhe [ Dr. B. A. M. University, Aurangabad] India MF 07 18 th June 2007

Historical Review – 1 • The blue green system, is known from last 100

Historical Review – 1 • The blue green system, is known from last 100 years. • Al. O has astrophysical significance as the bands of Al. O appear in normal Mira Giants and Mira Variables. • In the stars having low temperature the absorption band of Al. O (0, 0) at 4842 A 0 is seen. • In normal Mira Giants, due to higher temp. this band is seen in emission too. • Mecke tried to give vibrational analysis, which was further improved by Roy. Recently Saksena et al have shown that the some of the band heads of this system are shifted due to interaction of A 2Πi state with X 2 + state.

Fig 1. Energy level diagram of Al. O molecule

Fig 1. Energy level diagram of Al. O molecule

Historical Review – Continued • A sudden drop in the intensities of (4, 7),

Historical Review – Continued • A sudden drop in the intensities of (4, 7), (6, 7), (5, 7) and (10, 7) bands and those involving v" = 6 and 8 were seen by Rosen. • He attributed the phenomenon to predissociation especially for v" = 6, 7 and 8 for N = 60, 44, and 18 respectively. • He also concluded that the bands of v" = 9 progression were also predissociated. • Lagerqvist later told that the observation by Rosen might be an illusion which was found to be true.

 • In the bands with v" = 6 the rotational lines go off

• In the bands with v" = 6 the rotational lines go off because of the perturbation and not because of predissociation. • Shimauchi photographed the spectra of Al. O in air, nitrogen, oxygen argon and used high grade Al- rods as electrodes. She could record bands with v'=16 and v" = 12 and noticed that v" = 9 level of X 2 state is raised by 10 cm-1 because of perturbation by some state. • Goodlett and Innes, Mahieu, Coxon and Naxakis and Saksena et. al. tried to determine the sign of γ 0 . But Yamada et. al. gave most accurate value of γ 0 from microwave data

 • Bernard and Gravina analysed six bands of A 2Πi - X 2

• Bernard and Gravina analysed six bands of A 2Πi - X 2 + transition. They have taken the spin doubling constant of v = 0, 1 and 2 levels of X 2 + states as +0. 00073, – 0. 00022 and – 0. 00134 cm-1 respectively. In fact it is known that γ 0 increases as v and has only positive sign. • Getting unique expression from band head measurements is not possible because i) 0 - H differ vastly from bands of +ve and –ve sequences. ii) Due to rapid increase in v" for levels v" 4 to 7 the separation of R 1 and R 2, heads also increases very rapidly.

 • The spectrogram shown on the paper of Mahieu et. al. is not

• The spectrogram shown on the paper of Mahieu et. al. is not according to theoretical expectations, if the ratio of intensities of R 2 / R 1 and P 2 / P 1 is considered. • As per Mulliken’s relation R 1 and P 1 branch members are somewhat intense as compared to R 2 and P 2 members at low values of N. • Launila and Jonsson also photographed the same region of same band but because of large noise they could not see the expected intensity differences. • It is also known that the v' of the B 2 + state is negative and has almost a constant magnitude Therefore, to account for the large v' - v" the v' and v" should have opposite signs.

 • The positive sign of v" is in confirmation with both Sen and

• The positive sign of v" is in confirmation with both Sen and Lagerqvist. • Later, Coxon and Naxakis photographed the B-X band system using a microwave discharge (2450 MHz, 100 W) in a flowing mixture of Al. Cl 3 and O 2 at 0. 1 nm/mm and analysed 25 bands. They tried to show that v' - v" depends on v" levels but with some limitation (resolution wise and intensity wise, they could not go to high N values).

 • The rotational perturbations in the v' = 0 - 4 levels of

• The rotational perturbations in the v' = 0 - 4 levels of A 2 Pi state caused by the interaction of the rotational levels of the ground state, X 2 + v" = 5 -9 levels have been mapped out by Singh and Saksena. This was done by photographing the B-X system in the second order of 10. 6 m Ebert grating spectrograph. Eighteen bands were analyzed. It was shown that, as the rotational levels in different vibrational levels of the A 2 Pi state approach closer to the respective rotational levels of X 2 + state, the spin doubling increases. It is dependent on both v and N also. • Launila and Jonsson recorded F T spectrum of A-X band system at 2 mm. The hyperfine structure, was evident which is attributed to X 2 + state. The derived values of 1", 2" and 3" are very much different compared to earlier values. It was not clear how the hyperfine splitting affects the spin doubling constant of X 2 + state.

Present Work: Source of excitation is 2450 MHz, 150 W microwave discharge through a

Present Work: Source of excitation is 2450 MHz, 150 W microwave discharge through a flowing mixture of Al. Cl 3 and oxygen vapours. The BOMEM DA 8 F. T. spectrometer was used at apodized resolution of 0. 05 cm-1 to record the B – X band system. Fig. 2 shows the excitation set up and Fig 3 shows the spectrum. Nineteen bands of v = 1, 0, -1, and -2 sequences have been analysed. The (3, 2), (4, 3), (2, 3), (3, 4), (4, 5), (5, 6) and (6, 7) bands were analyzed for the first time. The rotational line frequencies of these R 2/R 1 and P 2/P 1 - doublets, along with twenty earlier bands, totaling 7200, have been fitted in a simultaneous least squares fit.

Fig 2: schematic diagram of the discharge tube

Fig 2: schematic diagram of the discharge tube

Fig 3: Overview of the Fourier transform spectrum of B 2 S+ –X 2

Fig 3: Overview of the Fourier transform spectrum of B 2 S+ –X 2 S+ band system of Al. O.

Fig 4: Rotational fine structure of the 0 -0 band of B 2 S+

Fig 4: Rotational fine structure of the 0 -0 band of B 2 S+ –X 2 S+ transition of Al. O.

 • The analysis was also extended to high N values. In this fit

• The analysis was also extended to high N values. In this fit 0 was fixed as 0. 001743192 cm-1 as given by Yamada. The molecular constants are presented in Table 3. • The higher N value rotational lines of (0, 0) & (0, 1) bands could be included only when H 0 and H 1 were taken in to consideration. • Also the overall deviation of the fit was minimized only when a cubic and fifth power term in N was included in the expression of spin doubling of X 2 + state F(N) = N/2 + s 1 N(N+0. 5)(N+1) - s 2 N 2(N+0. 5) (N+1)2 • The v' - v" values derived in the present study are compared in table 4 with those of earlier workers. • The vibrational constants are reported in table 5.

Conclusions: • Prior to our studies it was not possible to give accurate vibrational

Conclusions: • Prior to our studies it was not possible to give accurate vibrational expression for B – X system of Al. O mainly because of splitting of some of the R 2 and R 1 heads due to large spin-doubling in the higher vibrational levels of the X 2 + ground state and a few heads being shifted due to perturbations. Only when these bandheads are excluded the vibrational expression becomes accurate. • The anomalous spin-doubling in the X 2 + state, caused due to the interaction of the A 2 Pi state could be explained by including a cubic and fifth power term in the spin-doubling expression.

 • The high resolution F. T. spectrum has helped in determining more precise

• The high resolution F. T. spectrum has helped in determining more precise molecular constants of B 2 + (v = 0 to 11) and X 2 + ( v = 0 to 7) states. • The spin-doubling constant v', of the B 2 + state does not change with v but changes slightly after v 8. This may be due to the fact that perhaps at higher v values the spin-doubling increases due to interaction of C 2 Pr state with B 2 + state.

Table 1: Measurements of the bands of B 2 + - X 2 +

Table 1: Measurements of the bands of B 2 + - X 2 + transition (in cm-1) v = +4 v = +3 Sr. No. v - v R 2 head N† R 1 head N† 1 (5, 1) 23919. 005* 10 23918. 846* 10 0. 159 2 (6, 2) 23794. 177* 11 23793. 977* 11 0. 200 3 (7, 3) 23676. 038* 11 23675. 806* 11 0. 232 4 (8, 4) 23564. 653* 11 23564. 369* 11 0. 284 5 (9, 5) 23460. 083* 12 23459. 717* 11 0. 366 6 (10, 6) 23362. 057* 12 23361. 600* 12 0. 457 7 (11, 7) 23270. 735* 12 23270. 145* 12 0. 590 8 (3, 0) 23210. 161* 11 23210. 004* 11 0. 157 9 (4, 1) 23085. 894* 12 23085. 717* 12 0. 177 10 (5, 2) 22968. 421* 12 22968. 207* 12 0. 214 11 (6, 3) 22857. 673* 12 22857. 420* 12 0. 253 12 (7, 4) 22753. 627* 13 22753. 321* 12 0. 306 13 (8, 5) 22656. 430* 12 22656. 045* 12 0. 385 14 (9, 6) 22565. 902* 13 22565. 402 * 13 0. 500 15 (10, 7) 22482. 120* 14 22481. 439* 14 0. 681 * These are calculated positions, † rotational number N, where head is formed. Table continued…. .

 v = +2 v = -1 Sr. No. v - v R 2

v = +2 v = -1 Sr. No. v - v R 2 head N† R 1 head N† 16 (2, 0) 22362. 536* 13 22362. 365* 12 0. 171 17 (3, 1) 22245. 623 13 22245. 421 13 0. 202 18 (4, 2) 22135. 484 13 22135. 253 13 0. 231 19 (5, 3) 22032. 095 14 22031. 819 13 0. 276 20 (6, 4) 21935. 480 14 21935. 127 14 0. 353 21 (0, 2) 18733. 664 24 18733. 287 23 0. 377 22 (1, 3) 18660. 020 25 18659. 530 24 0. 490 23 (2, 4) 18593. 223 26 18592. 635 26 0. 588 24 (3, 5) 18533. 528 28 18532. 655 27 0. 873 25 (4, 6) 18480. 752 31 18479. 588 30 1. 164 26 (5, 7) 18435. 915 37 18434. 105 34 1. 810 27 (0, 1) 19682. 250 19 19682. 021 16 0. 206 28 (1, 2) 19594. 361 20 19594. 018 19 0. 229 29 (2, 3) 19513. 194 21 19512. 785 19 0. 343 30 (3, 4) 19438. 842 22 19438. 318 20 0. 409 31 (4, 5) 19371. 420 23 19370. 738 21 0. 524 32 (5, 6) 19310. 854 25 19309. 900 22 0. 682 33 (6, 7) 19257. 550 33 19256. 224 24 0. 954

Table 2: Vacuum wavenumbers and rotational line assignments of B 2 S+- X 2

Table 2: Vacuum wavenumbers and rotational line assignments of B 2 S+- X 2 S+ transitions of Al. O.

Table 3: Molecular constants (in cm-1) of B 2 + and X 2 +

Table 3: Molecular constants (in cm-1) of B 2 + and X 2 + state of Al. O. v Tv B 2 + state Bv Be = 0. 608976 Dv x 106 e = 0. 00507 v De = 0. 116085 x 10 -5 11 29725. 899 (22) 0. 553502 (54) 1. 038 (30) -0. 01105 (31) 10 28936. 304 (08) 0. 557909 (13) 1. 096 (04) -0. 01072 (17) 9 28139. 282 (06) 0. 562226 (08) 1. 104 (02) -0. 01116 (12) 8 27334. 844 (05) 0. 566540 (06) 1. 105 (01) -0. 01121 (10) 7 26523. 048 (05) 0. 570884 (05) 1. 114 (01) -0. 01094 (10) 6 25703. 946 (05) 0. 575229 (07) 1. 121 (02) -0. 01108 (09) 5 24877. 478 (04) 0. 579596 (05) 1. 124 (01) -0. 01091 (08) 4 24043 681 (04) 0. 584006 (04) 1. 135 (01) -0. 01093 (07) 3 23202. 579 (03) 0. 588413 (04) 1. 139 (01) -0. 01098 (06) 2 22354. 163 (03) 0. 592853 (03) 1. 144 (01) -0. 01089 (06) 1 21498. 399 (03) 0. 597345 (03) 1. 153 (01) -0. 01097 (05) 0 20635. 308 (03) 0. 601853 (03) 1. 158 (01) -0. 01093 (04) X 2 + state Be = 0. 641653 e = 0. 00593 v x 105 De = 0. 098542 x 10 -5 H x 1012 e = -0. 000621 x 10 -5 e = 0. 005815 x 10 -5 7 6463. 107 (07) 0. 596839 (15) 1. 658 (08) 0. 03473 (35) 0. 190 (17) 6 5581. 933 (05) 0. 603110 (07) 1. 273 (02) 0. 02429 (20) 0. 206 (04) 5 4686. 685 (04) 0. 609176 (04) 1. 184 (01) 0. 01850 (13) 0. 069 (02) 4 3777. 517 (04) 0. 615111 (04) 1. 149 (01) 0. 01253 (07) 0. 003 (02) 3 2854. 208 (03) 0. 621018 (03) 1. 139 (01) 0. 00826 (06) 0. 190 (17) 2 1916. 854 (03) 0. 626874 (03) 1. 113 (01) 0. 00532 (05) 1 965. 455 (03) 0. 632692 (05) 1. 112 (02) 0. 00315 (06) -0. 909 (222) 0 0 000 0. 63849184 * 1. 101 (01) 0. 001723* -1. 058 (046) * Kept fixed in our calculations. Values in parentheses are the standard deviations of the constant given in units of the last digit quoted

Graph v" v' and v" v and v v' Fig. 5

Graph v" v' and v" v and v v' Fig. 5

 Table 4: The v'- v" values (in cm-1) of a few bands of

Table 4: The v'- v" values (in cm-1) of a few bands of B 2 + - X 2 + system. v' v" This work* Sen Lagerqvist et. al. Mahieu et. al. Coxon & Naxakis 0 0 0. 01269 0. 0127 0. 01251 - 1 0 0. 01269 0. 0139 - 0. 01189 -0. 01289 0 1 0. 01412 0. 0130 0. 0138 0. 01364 -0. 01399 1 1 0. 01412 0. 0146 0. 01300 - 2 1 0. 01412 0. 0148 - 0. 01338 -0. 01428 1 2 0. 01629 0. 0158 0. 0157 0. 01292 -0. 01587 0 2 0. 01629 - 0. 0162 0. 01354 -0. 01573 1 3 0. 01923 - 0. 0184 0. 01540 -0. 01864 * For the B 2 + state v' = 0. 01097 is the average value for v= 0 -7 (see table 3)

Table 5: Vibrational constants of the X 2 + and B 2 + states

Table 5: Vibrational constants of the X 2 + and B 2 + states of Al. O ( in cm-1) State X 2 + B 2 + Te 0. 000 20685. 041 (23) e 979. 524 (20) 870. 369 (18) e x e 7. 036 (8) 3. 651 (4) e y e -0. 00106 (73) 0. 00096 (23)

6:

6:

V 35 32 29 26 23 20 17 14 11 8 5 2 2

V 35 32 29 26 23 20 17 14 11 8 5 2 2 5 8 11 14 17 20 23 26 29 32 35 Figure 6 (a): RKR, H-H, Extended- Rydberg& Zavitsas Potential energy curves for the ground state of Al. O molecule Figure 6 (b): % Deviation of H-H, Extended- Rydberg & Zavitsas Potential energy curves for the ground state Al. O molecule R 1. 29761 1. 30686 1. 31669 1. 32727 1. 33882 1. 35162 1. 36601 1. 38253 1. 40198 1. 42575 1. 45666 1. 50267 1. 618 1. 76852 1. 85846 1. 93502 2. 00629 2. 07523 2. 14341 2. 21181 2. 28118 2. 35213 2. 42522 2. 50101 2. 58006 G(V)+Y 00 26231. 58 24647. 11 22950. 69 21140. 86 19216. 16 17175. 14 15016. 34 12738. 29 10339. 55 7818. 65 5174. 134 2404. 545 0 2404. 545 5174. 134 7818. 65 10339. 55 12738. 29 15016. 34 17175. 14 19216. 16 21140. 86 22950. 69 24647. 11 26231. 58 R 1. 29761 1. 30686 1. 31669 1. 32727 1. 33882 1. 35162 1. 36601 1. 38253 1. 40198 1. 42575 1. 45666 1. 50267 1. 618 1. 76852 1. 85846 1. 93502 2. 00629 2. 07523 2. 14341 2. 21181 2. 28118 2. 35213 2. 42522 2. 50101 2. 58006 Ex Ryd 29232. 13 27015. 81 24797. 2 22559. 66 20286. 34 17962. 57 15581. 18 13128. 65 10596. 81 7976. 796 5260. 521 2439. 561 0 2427. 687 5216. 564 7865. 796 10375. 7 12748. 11 14986. 93 17096. 07 19081. 25 20948. 55 22704. 87 24358. 03 26000 % deviation 6. 97932 5. 50963 4. 29501 3. 30015 2. 48924 1. 83156 1. 31382 0. 90797 0. 59838 0. 36785 0. 20094 0. 08145 0 - H-H 28539. 88 26378. 1 24224. 68 22053. 4 19848. 97 17595. 76 15279. 07 12888. 65 10414. 47 7848. 519 5181. 241 2403. 966 0 2402. 966 5171. 878 7821. 105 10357. 79 12788. 33 15120. 07 17359. 14 19511. 23 21581. 81 23574. 7 25493. 38 27339. 75 Zavitsas 29531. 4 1 26684. 4 8 24070. 6 5 21606. 0 8 19232. 1 6 16906. 0 4 14598. 8 3 12279. 1 4 9921. 40 6 7498. 86 5 4983. 53 1 2342. 22 7 0 2350. 39 5041. 71 % deviation 5 -5. 36915 7624. 97 -4. 02632 7. 67546 2 -2. 96333 10113. 0 4. 73896 -2. 12257 3 -1. 47191 12512. 5 2. 60504 -0. 97837 6 -0. 61112 -1. 0821 14828. 2 -0. 34973 9 0. 03722 -0. 17426 17062. 2 -0. 06947 0. 62594 2 8 -0. 01653 19216. 1 0. 001347 0. 97113 2 0 7 21290. 3 0. 003675 1. 06799 9 2 0. 005248 23284. 8 -0. 00571 0. 97261 7 1 -0. 04243 25199. 0 -0. 11638 0. 74382 4 -0. 24128 4 27031. 2 -0. 42798 0. 44334 9 4 -0. 68632 -1. 02566 0. 14495 4 -1. 45146 -1. 96843 0 -2. 57762 0. 12596 5

BO u+1 0. 66479 0. 684823 0. 70885 0. 738803 0. 77866 0. 839652

BO u+1 0. 66479 0. 684823 0. 70885 0. 738803 0. 77866 0. 839652 1 1. 222268 1. 360502 1. 480781 1. 594661 1. 706372 1. 818191 1. 433771 1. 367026 1. 297124 1. 224071 1. 147869 1. 068524 1. 147869 1. 224071 1. 297124 1. 367026 1. 433771 • • Figure 7 The combined Reduced potential curves for the ground state of BO, Al. O and Ga. O molecules Al. O Rho • Rho 0. 669522 0. 683266 0. 698883 0. 717028 0. 738685 0. 765582 0. 801259 0. 855814 1 1. 20344 1. 332745 1. 447093 1. 55689 1. 666012 1. 776599 1. 89006 2. 007552 u+1 1. 446971 1. 399496 1. 349282 1. 296295 1. 240499 1. 181863 1. 120351 1. 05593 1. 120351 1. 181863 1. 240499 1. 296295 1. 349282 1. 399496 1. 446971 Ga. O Rho u+1 0. 669973 1. 457691 0. 68469 1. 411448 0. 700772 1. 361619 0. 718953 1. 308215 0. 740298 1. 251246 0. 766609 1. 190722 0. 801503 1. 126651 0. 855287 1. 059041 1 1 1. 215627 1. 059041 1. 357516 1. 126651 1. 486762 1. 190722 1. 614478 1. 251246 1. 745219 1. 308215 1. 881911 1. 361619 2. 02704 1. 411448 2. 1831 1. 457691 These RPC curves show similarity with the corresponding RKR curves, which is one of the crieteria obeyed by RPC. All of them show minima at (1, 1) i. e. ρ = 1 and u + 1 = 1. The combined RPC of all these molecules is shown in Fig. 6. 12. The outer most curves are due to Ga. O as Gallium is heaviest atom compared to Boron and Aluminium; the innermost RPC is of BO.

 a a' Fig. 8 The RKR (a) of Al. O and RPC (a')

a a' Fig. 8 The RKR (a) of Al. O and RPC (a')

References: [1] Mecke R. , Phys. Zeits. 26 (1925) 217 -225. [2] W. C.

References: [1] Mecke R. , Phys. Zeits. 26 (1925) 217 -225. [2] W. C. Pomeroy, Phys. Rev. 29 (1927) 59 -78. [3] F. P. Dehalu, Bull. Acad. Roy. Belgium 23 (1937) 604 -608. [4] M. K. Sen, Ind. J. Phys. 11 (1937) 251 -281. [5] D. C. Roy, Ind. J Phys. 13 (1939) 231. [6] F. P. Coheur, B. Rosen, Mem. Soc. Roy Sci. Liege 10 (1941) 405 -413. [7] B. Rosen, Phys. Rev. , 68 (1945) 124 -126. [8] A. Lagerqvist, N. E. L. Nilson, R. F. Barrow, Proc. Phys. Soc. (Lon) 69 (1956) 356 -357 [9] A. Lagerqvist, N. E. L. Nilson, R. F. Barrow, Arkiv Fysik 12 (1957) 543 -546.

[10] M. Shimauchi, Sci. Light (Japan) 7 (1958) 101 -111. [11] V. W. Goodlett,

[10] M. Shimauchi, Sci. Light (Japan) 7 (1958) 101 -111. [11] V. W. Goodlett, K. K. Innes, Nature (London) 183 (1959) 243244. [12] P. W. Merrill, A. J. Deutsch, P. C. Keenan, Ap. J. 136 (1962), 21 -34. [13] B. Authier, J. E. Blamont, G. Carpentier, Ann. Geophys. 20 (1964) 342 -345. [14] O. Harang, Planet Space Sci. 12 (1964) 567 -571. [15] R. E. Johnson, J. Geophys. Res. 70 (1965) 1275 -1277. [16] P. C. Keenan, A. J. Deutsch, R. F. Garrison, The Astro. J. 158 (1969) 261 -268. [17] J. K. Mc. Donald, K. K. Innes, J. Mol. Spectrosc. 32 (1969) 501510. [18] J. K. Mc. Donald, V. W. Goodlett, T. W. Tolbert, J. Mol. Spectrosc. 32 (1969) 511 -512.

[19] J Schamps, Chem. Phys. 2 (1973) 352 -366 [20] J. M. Mahieu, D.

[19] J Schamps, Chem. Phys. 2 (1973) 352 -366 [20] J. M. Mahieu, D. Jacquinot, J. Schamps, J. A. Hall, J. Phys. B At. Mol. Phys. 8 (1975) 308 -312. [21] R. W. Nicholls, Annu. Rev. Astron. Astrophys. , 15 (1977) 197234. [22] M. Singh, M. D. Saksena, Can. J. Phys. 61 (1983) 1347 - 1358. [23] A. Bernard, R. Gravina, Z. Naturforsch 39 a (1984) 1049 -1055. [24] A. P. Walvekar, M. A. Rama, Ind. J Pure and Applied Phys. , 22 (1984) 53 -55. [25] M. Singh, M. D. Saksena, Can. J. Phys. 63 (1985) 1162 - 1172. [26] M. Singh, G. V. Zope and S. L. N. G. Krishnamachari, J. Phys. B At. Mol. Phys. 18 (1985) 1743 -1745. [27] J. A. Coxon, S. Naxakis, J. Mol. Spectrosc. 111 (1985) 102 -113.

[28] M. D. Saksena, G. S. Ghodgaonkar, M. Singh, J. Phys. B At. Mol.

[28] M. D. Saksena, G. S. Ghodgaonkar, M. Singh, J. Phys. B At. Mol. Phys. 22 (1989) 1993 -1996. [29] C. Yamada, E. A. Cohen, M. Fujitake, E. Hirota, J. Chem. Phys. , 92(4) (1990) 2146 -2149 [30] O. Launila, J. Jonsson, J. Mol. Spectrosc. 168 (1994) 1 -38. [31] R. S. Mulliken, Rev. Mod. Phys. 3 (1931) 89 -155. [32] G. Hertzberg, ‘Molecular Spectra and Molecular Structure, Vol. 1, Spectra of Diatomic Molecules, ’, Van Nostrand, NY, 1950. [33] Rydberg R, Z Phys, 73, 376 (1932) [34] Rydberg R, Z Phys, 80, 514 (1933) [35] Klein O, Z Phys, 76, 226 (1932) [36] Rees A L G, Proc Phys Soc. , 59, 998 (1947)

[37] Vanderslice J T, Meson E A, Maisch W G and Lippincott E R,

[37] Vanderslice J T, Meson E A, Maisch W G and Lippincott E R, J. Chem. Phys. , 33, 614 (1960) [38] Vanderslice J T, Meson E A, Maisch W G and Lippincott E R, J. Mol. Spectrosc. , 3, 17 (1959) and 5, 83 (1960) [39] R. R. Reddy et al Astrophysics & Space Sci. 262: 223 (1999) [40] A. Sharma J. Quant. Spectrosc. Radiat. Transfer , 7, 23, 283 (1967) [41] Chakraborty B. and Pan Y. K. , Applied spectroscopy Review, 7, 283 (1973) [42] Sharp C. M. , Astron. Astrophys. Suppl. Ser. , 55, 33 (1984) [43] Nicholls R. W. , J. Quant. Spectrosc. Radiat. Transfer, 28, 481 (1982) [44] W. R. Jarmain and J. C. Mc. Callum, J. Quant. Spectrosc. Radiat. Transfer, 11, 421 (1971)[

[45] Jarmain W R and Nicholls R W, J. Quant. Spectrosc. Radiat. Transfer; 23,

[45] Jarmain W R and Nicholls R W, J. Quant. Spectrosc. Radiat. Transfer; 23, 229 -235 (1980) [46] Hulbert H M and Hirschfelder J O, J. Chem. Phys. , 9, 61, (1941) ibid 35, 1901 (1961) [47] Morse P M, Phys. , Rev. , 34, 57 (1929) [48] Murrell J N and Sorbie K S, Faraday, Tranjections, 70, 1152 (1974) [49] Huxely P and Murrell J N, J. Chem. Soc. Faraday, 7 A, part 2, 323 (1983) [50] Zavitsas A A, American chem. soc. , 113, 4755 (1991) [51] Jenc F and Brandt B A, J. Mol. Spectrosc. , 165, 590 (1994) [52] Le Roy R J, Uni. of waterloo, Chem. , Phys. Research report CP-425 (1992) [53] Castano J de Juan and Martinez E, J. Chem. , Edu. , 60, 291 (1983)

ACKNOWLEDGEMENTS • We thank Dr. S. M. Sharma, Head, High Pressure Physics Division for

ACKNOWLEDGEMENTS • We thank Dr. S. M. Sharma, Head, High Pressure Physics Division for access to F. T. spectrometer and Dr. S. C. Sabharwal, Head, Spectroscopy Division for continuous encouragement during the course of this work. The authors are also thankful to Dr. A. Venugopalan for many helpful discussions. • One of us S. H. Behere, is thankful to Dr. N. G. Kotapalle, the Vice chancellor of Dr. B. A. M. University, Aurangabad for financial assistance to attend this conference. • We are also thankful to Dr. Terry Miller for the hospitality extended to us.

Glimpses of Aurangabad and around

Glimpses of Aurangabad and around

International Conference on Advances in Computer Vision and Information Technology November 28 – 30,

International Conference on Advances in Computer Vision and Information Technology November 28 – 30, 2007 Organized by Department of Computer Science & Information Technology Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (MS) 431004 India. Details on website: www. bamu. net www. acvit. org

International conference on Microwaves and Optoelectronics December 17 – 20, 2007 Organized by Department

International conference on Microwaves and Optoelectronics December 17 – 20, 2007 Organized by Department of Computer Science & I. T. And Department of Physics Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (MS) 431004 India. Details on web site: www. icmo 2007. org

Wel-Come Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.

Wel-Come Dr. Babasaheb Ambedkar Marathwada University, Aurangabad.