Week 9 b OUTLINE Digital logic functions NMOS
Week 9 b OUTLINE • Digital logic functions • NMOS logic gates • The CMOS inverter Reading • Rabaey et al. : Section 5. 2 • Hambley: Sections 7. 1 -7. 2 (Logic) EECS 42, Spring 2005 Week 9 b, Slide 1 Prof. White
Digital Signals • For a digital signal, the voltage must be within one of two ranges in order to be defined: VDD “ 1” VOH VIH undefined region VIL “ 0” VOL • Positive Logic: – “low” voltage logic state 0 0 Volts increasing voltage – “high” voltage logic state 1 EECS 42, Spring 2005 Week 9 b, Slide 2 Prof. White
Logic Functions, Symbols, & Notation NAME “NOT” “OR” “AND” SYMBOL A A B EECS 42, Spring 2005 NOTATION F F F Week 9 b, Slide 3 F=A TRUTH TABLE A F 0 1 1 0 F = A+B A B 0 0 0 1 1 F 0 1 1 1 F = A • B A B 0 0 0 1 1 F 0 0 0 1 Prof. White
“NOR” “NAND” “XOR” (exclusive OR) A B A B EECS 42, Spring 2005 F F F Week 9 b, Slide 4 F = A+B A B 0 0 0 1 1 F 1 0 0 0 F = A • B A B 0 0 0 1 1 F 1 1 1 0 F=A+B A B 0 0 0 1 1 F 0 1 1 0 Prof. White
NMOS Inverter (“NOT” Gate) Voltage-Transfer Characteristic v. OUT Circuit: VDD F A i. D v. IN = VDD 0 VT VDD/RD increasing v. GS = v. IN > VT 0 EECS 42, Spring 2005 v. GS = vin VT Week 9 b, Slide 5 VDD v. DS A F 0 1 1 0 Prof. White v. IN
Noise Margins Definition of Input Levels Definition of Noise Margins logic swing Vsw VOL VOH Noise margin high Noise margin low EECS 42, Spring 2005 Week 9 b, Slide 6 Prof. White
NMOS NAND Gate • Output is low only if both inputs are high VDD RD F A Truth Table A B 0 0 0 1 1 B EECS 42, Spring 2005 Week 9 b, Slide 7 F 1 1 1 0 Prof. White
NMOS NOR Gate • Output is low if either input is high VDD RD F A B Truth Table A B 0 0 0 1 1 EECS 42, Spring 2005 Week 9 b, Slide 8 F 1 0 0 0 Prof. White
Disadvantages of NMOS Logic Gates • Large values of RD are required in order to – achieve a low value of VOL – keep power consumption low à Large resistors are needed, but these take up a lot of space. • One solution is to replace the resistor with an NMOSFET that is always on. EECS 42, Spring 2005 Week 9 b, Slide 9 Prof. White
The CMOS Inverter: Intuitive Perspective SWITCH MODELS CIRCUIT VDD G VDD S Rp D VOUT VIN D G VOL = 0 V VOH = VDD Rn S Low static power consumption, since V one MOSFET is always off in steady state. IN EECS 42, Spring 2005 VOUT = VDD Week 9 b, Slide 10 VIN = 0 V Prof. White
CMOS Inverter Voltage Transfer Characteristic N: sat P: sat VOUT N: off P: lin VDD C N: sat P: lin A B D E N: lin P: sat N: lin P: off 0 0 EECS 42, Spring 2005 VDD Week 9 b, Slide 11 VIN Prof. White
N-Channel MOSFET EECS 42, Spring 2005 P-Channel MOSFET Week 9 b, Slide 12 Prof. White
CMOS Inverter Load-Line Analysis V GS VIN = VDD + VGSp IDn=-IDp increasin g VIN = 0 V p =V IN - V DD VOUT = VDD + VDSp + – – VDSp=VOUT-VDD + IDn=-IDp VIN = VDD increasing VIN 0 VDD 0 VDSp = VDD EECS 42, Spring 2005 VOUT=VDSn VDSp = 0 Week 9 b, Slide 13 Prof. White
CMOS Inverter Load-Line Analysis: Region A V VIN VTn GS IDn=-IDp p =V IN - V DD + – – VDSp=VOUT-VDD + IDn=-IDp 0 VDD 0 EECS 42, Spring 2005 Week 9 b, Slide 14 VOUT=VDSn Prof. White
CMOS Inverter Load-Line Analysis: Region B V VDD/2 > VIN > VTn GS IDn=-IDp p =V IN - V DD + – – VDSp=VOUT-VDD + IDn=-IDp 0 VDD 0 EECS 42, Spring 2005 Week 9 b, Slide 15 VOUT=VDSn Prof. White
CMOS Inverter Load-Line Analysis: Region D V VDD – |VTp| > VIN > VDD/2 GS IDn=-IDp p =V IN - V DD + – – VDSp=VOUT-VDD + IDn=-IDp 0 VDD 0 EECS 42, Spring 2005 Week 9 b, Slide 16 VOUT=VDSn Prof. White
CMOS Inverter Load-Line Analysis: Region E V VIN > VDD – |VTp| GS IDn=-IDp p =V IN - V DD + – – VDSp=VOUT-VDD + IDn=-IDp 0 VDD 0 EECS 42, Spring 2005 Week 9 b, Slide 17 VOUT=VDSn Prof. White
The CMOS Inverter: Current Flow during Switching N: sat P: sat VOUT V DD N: off P: lin VDD S G i VOUT A D G C N: sat P: lin D V IN B D E N: lin P: sat S N: lin P: off 0 VDD 0 EECS 42, Spring 2005 i Week 9 b, Slide 18 VIN Prof. White
- Slides: 18